
MASTER COPY
ltD 4 ~t...o &l/3

KEEP TIIIS COPY FOR REPROOLICTION :'l!Rf'OSES

REPORT DOCUMENTATION PAGE
Form Approvf'd

OMB No 0104·0188

l'••hlu '"P'lr!""l IJu"lf"n ''" 1 hoi •r,ll~rto<1n r,l .ntorm.l!l<lf'l •1 '''"m,t..-J It) ·'~"'·'•ll" I h<)Uf pt"r r-.p<l"ll'. tn(IUdlnoj thr Juror l')o '""'""""'•l •·Ill< '" 11001. H'M'h'"'l ,..,\lon•l .. ut.• \<1'1" •-,,

,1.,,,.,,..,.,, 1 ,1ncl m.llnt.lln""l'"" •)"'" ,. J-J, ,,nd 1<)mf)lf'llnof ,omJ '""''"""'"Q thl' 1CIIf'fll<)n 1)1 rnl<)tm,lll<)n '>f'nd commf'ntl ''"/''rdon<jlh•• bur 11rn "ltlm.otr' 'l' .1ny <lltwr ,1\1.)<"< I ''' I hi\

,,u,.nuJn nl 1nlnrm.ot,l< "'· '·"''"<1'"1 ~U'J1<':'"'>l"l"' It>• rrdu'""l th" o.,rd"" to W.nh•mliOn H~.ldQ<.Mflf'!''l '•<!tvou!•l, O~r,.nor,r.. ''' '"''"'"·>~••"' <)P""<MH>nl <1nd "'"r><J•a. 1: '~ l••lf•••·,om

t 1,,m llujhw.IV ~UII!' I]Q'I fl d'"'l'-'•"· •I A JJ }0} ~t !OJ. ''"d !<) ttu• ()lfo(~ ')I M,ln.t<jt"mf'nl ~nd IJ•Jd')f'l. PolPf'fWOfk 11Pduf1<'?1"1 l'rf'llf'(I (0 ,'(14 .,11 Ill!). W.nt .. nrJI'!fl. [)(JQ')Qj

1. AGENCY USE ONLY (Leave blank) I LREPORT DATE ,3. REPORT TYPE AND OATES COVERED

I ! 10/19/92
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Very High-Speed Arithmetit Processors

6. AUTHOR(S)

Dr. F. J. Taylor

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION.

University of Florida
REPORT NUMBER

219 Gri nter Ha 11
Gainesville, FL 32611

-
.

9. SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING I MONITORING

u. s. Army Research Office
AGENCY REPORT NUMBER

P. 0. Box 12211
Research Triangle Park, NC 27709-2211

.
:

11. SUPPLEMENTARY NOTES

The view, opinions and/or findings contained in this report are those of the

author{s) and should not be construed as an official Department of the Army

position policy or decision, unless so designated by other documentation.
12a. DISTRIBUTION I AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Our VHSAP ARO study has lead to a number of accomplishments including an original VLSI
processor and a s~stem with a high residue number system (RNS) content called the
Gauss Machine. T e Gauss machine is a SIMD systolic array architecture which takes
advantage of the Galois-enhanced quadratic residue number system (GEQRNS) to form
reduced complexity arithmetic elements. The Gauss machine is tar0eted at front-end
signal and image processinf applications. With a 2x2 array of GE RNS multiplier-
accumulators operatinr at 0 MHz, the Gauss machine can achieve a peak equivalent
throughput of 320 mil ion operations per second when performing complex arithmetic.
The Gauss machine is designed for a broader, more general class of problems other than
RNS based systems which have been constructed: the Gauss machine may be used to
accelerate computations which involve or ma{ be ex)ressed as matrix-matrix (level 3),
matrix-vector (level 2), or vector-vector (evel 1 operations. This ~aper describes
the implementation of the Gauss machine and how it may be used to acce erate signal
processing operations.

14. SUBJECT TERMS
DODFARSUP52.235-7005
FAR52.216.7

1). Sl(URITY CLASSifiCATION 16. SECURITY CLASSIFICATION
Of REPORT OF THIS PAGE

LINC:I.i\:;;; f F fEll UNCLi\SS T FT f-:D

. ' " ',. ''· N •. J I ·l(l () . ' f,l) I ,()\)

19. SECUn!TY ClASSifiCATION
OF ABSTRACT

UNCl.A~)!)-II·'ll·:n

IS. NUMBER Of PAGES

165
16. PRICE CODE

20. LIMITATION OF ABSTRACT

111.

' ' ,r,JI<d.nd I <Hm ,l)1\ II •u , H))

''""·' ,,,...,, t•v ·\N\o '•1-1 I J'J 'I\
I'll< I(IJ

VERY HIGH-SPEED ARITHMETHIC PROCESSORS
(THE GAUSS MACHINE)

FINAL REPORT

DR. FRED J. TAYLOR

10/29/92

DAAL03-89-K-014 7

A REPORT PRESENTED TO THE ARMY RESEARCH OFFICE.
PREPARED BY THE HIGH-SPEED DIGITAL ARCHITECTURE

LABORATORY.

UNIVERSITY OF FLORIDA

1992

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

ABSTRACT

VERY HIGH-SPEED ARITHMETIC PROCESSORS

Our VHSAP ARO study has lead to a number of accomplishments including

an original VLSI processor and a system with a high residue number system (RNS)

content called the Gauss Machine. The Gauss machine is a Sir-ID systolic array

architecture which takes advantage of the Galois-enhanced quadratic residue number

system (GEQRNS) to form reduced complexity arithmetic elements. The Gauss . . .

machine is targeted at front-end signal and image processing applications. With a

2 x 2 array of GEQRNS multiplier-accumulators operating at 10 MHz, the Gauss

machine can achieve a peak equivalent throughput of 320 million operations per

second when p"erforming complex arithmetic. The Gauss machine is designed for a

broader, more general class of problems than other RNS based systems which have

been constructed: the Gauss machine may be used to accelerate computations which

involve or may be expressed as matrix-matrix (level 3), matrix-vector (level 2), or

vector-vector (level 1) operations. This paper describes the implementation of the

Gauss machine and how it may be used to accelerate signal processing operations.

II

TABLE OF CONTENTS

Abstract
List of Figures
List of Tables .
I Theory
Chapter 1 Basis of Residue Number System

1.1 The Chinese Remainder Theorem
1.2 Complex Residue Number System (CRNS) .
1.3 Quadratic Residue Number System (QRNS)
1.4 Galois Enhanced QRNS (GEQRNS) ..
1.5 L-CRT

II InvestiGATOR Array Processor Backplane
Chapter 2 Introdudion ..

2.1 Motivation
2.2 Design Parameters .

Chapter 3 Implementation .
3.1 Architecture
3.2 CPU Module

3.2.1 Cache Control .
3.2.2 Interrupt Control
3.2.3 Address Space Decoding
3.2.4 Bus Cycle Termination
3.2.5 Abnormal Bus Cycle Termination: Bus Error Control
3.2.6 Byte Select Signals
3.2. 7 Miscellaneous Signals

3.3 Memory Module
3.3.1 Static Column RAM
3.3.2 ROM Controller and Architecture .

3.4 I/0 Bus and Devices
3..±.1 SCSI
3..±.2 SIO

3.5 I/0 Expansion
3.6 Array Bus .

3.6.1 CPU to Array Bus Interface and Architecture
3.6.2 Local (Near-Neighbor) Connections
3.6.3 Array Broadcast Bus ..

3. 7 Support Circuitry
3. 7.1 Clock Generator Module
3.7.2 Reset Circuit Module .

Chapter 4 Software ..
4.1 Kernel
4.2 SBlC Firrnwa.rc

Ill

11
VI

Vlll

1
2
2
4
5
8
9

12
13
13
13
16
16
17
18
19
20
21
21
22
22
22
23
30
31
31
34
35
37
37
38
38
39
39
39
43
43
44

4.2.1 SCSI 13us Operation 44
4.2.2 SI3IC Firmware 47

4.3 SIO Firmware . . 48
III Gauss Machine 50
Chapter 5 Introduction 51

5.1 Motivation 51
5.2 Design Parameters 52

Chapter 6 Implementation . 53
6.1 Architecture 53
6.2 Processor Implementation . 54

6.2.1 Processor Control Signals 56
6.3 Controller Implementation 56
6.4 Array Initialization 58
6.5 Conversion Engine Architecture . 60
6.6 Application Programmer's Interface . 62

6.6.1 Overview 62
6.6.2 High-Level API Routines . 63
6.6.3 Macros and Constants . . . 66
6.6.4 Function Descriptions. . . . 68

Chapter 7 Algorithms 119
7.1 Matrix Product Based Algorithms . 119

7.1.1 Matrix Multiplication. . . . 119
7.1.2 Discrete Fourier Transform . 122
7.1.3 Convolution and Correlation . 123

7.2 Vector Mode Algorithms ... ·. . . . 125
7.2.1 Vector Addition 125
7.2.2 Pointwise Vector Multiplication 126

7.3 QR Decomposition 128
7.3.1 Householder Reflections 128
7 .3.2 Householder QR Factorization 130
7.3.3 Dynamic Range Requirements of the Householder QRD . 131

Chapter 8 Summary and Conclusions . 135
8.1 Motivation 135
8.2 Results 136

Appendix A InvestiGATOR Schematics. . . 139
Appendix B InvestiGATOR State Machines 152
Appendix C InvestiGATOR Programmable Logic Device Listings 157

C.1 MACH1C . 157
C.2 MACH2 . . 157
C.3 MACH3XA 157
C.4 PALO. . 157
C.5 PALlA . 157
C.6 PAL313 . 157
C.7 PAL4. 157
C.S PAL5. 157
C.9 PAL7. 157
C.lO PAL12 157

IV

Appendix D InvestiGATOR Source Code
D.1 Link Specification File: BACKPLAN.LNK
D.2 Basic Type Definitions: BASETYPE.H .
D.3 I/0 Constants: INVESTIO.INC
D.4 Base Firmware: BACKPLAN.C
D.5 QRNS Conversion Code: CONVERT.C .
D.6 Monitor: MONITOR.C
D.7 Serial I/0 Code: ESCC.C
D.8 SCSI I/0 Code: SBIC.C
D.9 Interrupt Service Routines: ISR.M68 ..
D.10 POST and Initialization: POSTINIT.M68
D.ll C Startup Code: STARTUP.M68

Appendix E Gauss Machine Schematics
Appendix F Gauss Machine Programmable Logic Device Listings

· F.1 PAL Listings
F.l.l PALCl.PDS .
F.1.2 PALC2.PDS .
F.1.3 PALC3.PDS .
F.1.4 PAL"C4.PDS .
F.1.5 PALC5.PDS .

. F.l.6 PALC6.PDS .
F.l.7 PALC7.PDS
F.1.8 PALC8.PDS
F.1.9 PALC9.PDS

Appendix G Gauss Machine Microcode .. .
G.1 Gauss Machine Microcode Listing ..
G.2 Gauss Machine Microcode Description

Appendix H Macintosh API Source Code ...
H.1 TYPES.H
H.2 CONV.H
I-!.3 INTMATRIX.H .
H.4 INTMATRIX.C .
H.5 LIST.H .. .
H.6 LIST.C .. .
H.7 MATRIX.H
H.S MATRIX.C
I-!.9 UTILS.H .
H.10 UTILS.C .

References

v

158
158
158
158
158
158
158
158
158
158
158
158
159
162
162
162
162
162
162
162
162
162
162
162
163
163
163
164
164
164
164
164
164
164
164
164
164
164
165

LIST OF FIGURES

1.1 Block Diagram of a GEQRNS Multiplier
1.2 Block Diagram of L-CRT (a) and QRNS Augmented L CRT (b)
3.1 Block Diagram of the InvestiGATOR Array Processor Testbed .
3.2 Block Diagram of CPU Module
3.3 STERM Signal Input and Conditioning
3.4 Block Diagram of SCRAM Architecture
3.5 SCRAM Controller Architecture
3.6 Pseudo-Code for Address Multiplexer SA Fault Detection
3.7 March C Algorithm for Memory Testing
3.8 March B Algorithm for Memory Testing
3.9 A Basic NPSF Detection Algorithm
3.10 Block Diagram-of the SCSI Port
3.11 InvestiGATOR Serial Port Pinout
3.12 InvestiGATOR to IBM PS/2 Serial Cable
4.1 InvestiGATOR Software Architecture Block Diagram
4.2 SCSI Bus Phases
4.3 Test Unit Ready Command Operation
4.4 Request Sense Command Operation
4.5 Send Command Operation
4.6 Receive Command Operation
4.7 SBIC Interrupt Service Routine Flow Diagram .
6.1 Block Diagram of Gauss Machine Array
6.2 Block Diagram of Gauss Machine Processor Element
6.3 Block Diagram of Vector Mode Architecture
6.4 Augmented Processor Element
6.5 Block Diagram of Gauss Machine Controller Architecture .
6.6 Gauss Machine Pipeline Delay Model ...
6.7 Processor Multiplier Programming Model
6.8 Processor Adder Programming Model .
6.9 Forward Conversion Architecture .
7.1 Example of Matrix Multiplication .
A.1 InvestiGATOR CPU Module ...
A.2 InvestiGATOR SCRAM Module.
A.3 InvestiGATOR ROM Module ..
A.4 InvestiGATOR I/0 Module ...
A.5 InvestiGATOR SCSI Module ..
A.6 InvestiGATOR SIO Module
A.7 InvestiGATOR Array 13us Interface
A.S Invest.iGATOH. Miscellaneou" Module.
A.9 lnvest.iGATO!l Array Bus, First Part .
A.IO lnv<'"i.iGATOH. Array Bus, Second Part..

VI

9
11
17
18
21
24
26
29
30
30
30
32
35
36
43
45
45
46
46
47
49
54
54
55
55
57
57
59
60
61

120
139
140
141
142
143
144
145
146
147
148

A.ll InvestiGATOR Array Bus, Third Part
A.12 InvestiGATOR I/0 Expansion Bus
A.13 InvestiGATOR Bypass Capacitors .
B.1 Bus Error Detection State Machine
B.2 ROM Controller State Machine ..
B.3 SCRAM Controller State Machine.
B.4 SBIC Controller State Machine ..
B.5 SIO Controller State Machine .. .
E.1 Gauss Array
E.2 Gauss Array Miscellaneous
E.3 Gauss Array Instruction Decoding .

\"11

149
150
151
152
153
154
155
156
159
160
161

LIST OF TABLES

3.1 Interrupt Priority Levels . 19
3.2 Address Space Decoding . 20
3.3 SCSI-2 Command Set . 33
3.4 Time Constants versus Baud Rates for Enhanced Serial Communication

Controller ·. 34
3.5 Enhanced Serial Communication Controller Register Memol'y Map . 35
3.6 I/0 Expansion Connector Signals 36
3.7 Array Bus Signals 41
3.8 Clock Reservation 42
6.1 Gauss Machine Processor Control Signals . 118

VIII

Part 1

Theory

1

Chapter 1

BASIS OF RESIDUE NUMBER SYSTEM

1.1 The Chinese Remainder Theorem

There are two large penalties in performing arithmetic in the two's complement sys­

tem: the carry must propagate across the entire word for addition operations, and

the size of the multiplier grows as the square of the width of the word. The Chinese

·Remainder Theorem (CRT) [1, 2] suggests a means of eliminating the carry propa­

gation problem and of producing a multiplier that grows linearly with the width of

the word. The CRT is presented below.

Theorem 1 (The Chinese Remainder Theorem) Let M = Tif=1 p;, where for

i,j E {1,2,3, ... ,L}, gcd(p;,pj) = 1 for alii i= j, and eachp; E z+. Then there

exists an isomorphism</>: ZM <--> Zp1 x Zp, x Zp3 X··· x ZPL desc1'ibed by the following.

Let m; = Mfp;, and m;m;-1 = 1 (modp;) for all i E {1,2,3, ... ,L}. If

X E ZM, let </>(X) = (:v1 , x2 , x3 , ... , X£) where x; = X (mod p;) for all i E

{1,2,3, ... ,L} then X= </>- 1(x 1 ,x2,x3 , ... ,x£) is described by the following con­

gruence

X= {~ m; < m;-
1
x; >p,} (mod J\!1)

where < • >p indicates the !t'llll1'Y (mod p) opemtion.

Th<' Ctrr forms the basis for the RNS. In the RNS, two's complement integers

are convert.('d to their L-tuplc• residue representation by the ring isomorphism </>:

3

ZM <-+ Zp, x Zp, x Zp, x · · · x ZPL described by the CRT. The numbers which are

in their L-tuple representation may be added and multiplied component-wise and

reconstructed via the CRT to form the correct result in ZM. For example, consider

the RNS system described by p, = 3, P2 = 5, and P3 = 7. Then M = PIP2P3 = 105.

Let a = 7, and b = 9 where a, b E ZM. The numbers a and b may be mapped to

their RNS 3-tuple representation via the mapping ¢>:

</>(a)=(< 7 >3,< 7 >s,< 7 >7) = (1,2,0)

cp(b) = (< 9 >3,< 9 >s,< 9 >7) = (0,4,2).

Arithmetic may be performed on the RNS £-tuple representation of a, bE ZM

given by the mapping</>. Let </>(a) = (a1 , a2, a3 ,. 00, aL), and </>(b) = (b1 , b2, b3,. 00, b£).

Then

where o E { +, -, x }. Consider the 3-tuple representations of a and b:

(1,2,0) + (0,4,2) = (< 1 +O >3,< 2+4 >s,< 0+2 >7) = (1,1,2) (1.1)

(1,2,0) x (0,4,2) = (< 1· 0 >3,< 2 ·4 >5,< 0 · 2 >7) = (0,3,0). (1.2)

For comparison, the mapping of a + b = 16 and ab = 63 to their RNS 3-tuple

representation:

</>(a+ b)=(< 16 >3, < 16 >5, < 16 >7) = (1, 1,2)

</>(ab) = (< 63 >3,< 63 >s,< 63 >1) = (0,3,0)

(1.3)

(1.4)

The operations performed on the RNS representations of a and b (equations

1.1,1.2) give !.he sarne results as t.he RNS •·epr<'S<~nt.at.ion of a+ band ab (equations

4

1.3, 1.4) performed in ZM· Now consider the restoration of the representation of

a + b, ab E ZM from the RNS representations. For (PI, P2, p3) = (3, 5, 7) we have

m 1 = 35, m;- 1 = 2, m 2 = 21, m21 = 1, m3 = 15, and m31 = 1. From above we have

</!(a +b)= (1, 1, 2), and <P(ab) = (0, 3, 0).

q,-1(1, 1, 2) = {~ m; < m;-1x; >p,} (mod 105)

- {35 < 2 · 1 >3 +21 < 1 · 1 >5 +15 < 1 · 2 >7 } (mod 105) = 16

q,-1(0,3,0) {~m; < m;-1x; >p,} (mod 105)

= {35 < 2 · 0 >3 +21 < 1 · 3 >s +15 < 1 · 0 >7} (mod 105) = 63

Thus we see that the results produced by the mapping q,-1 are as expected.

Generally, the moduli are chosen to be small enough that the adders and multipliers

may be implemented in a reasonably small memory-based lookup table. In a VLSI

implementation we might leverage advanced memory technology and thereby achieve

greater speed and smaller die area.

1.2 Complex Residue Number System (CRNS)

The RNS may be used to perform computations with complex numbers by using RNS

arithmetic elements to emulate the operations which would be performed using two's

complement hardware. The use of RNS arithmetic to perform complex operations is

called complex RNS or CRNS. Suppose we have Gaussian integers a+ jb, c + jd E

ZM[j]/(P + 1), and ,P denotes the isomorphism between the Gaussian integers and the

CRNS: 1/;: ZM[j]/(P+1) <-> Zp, xZp, x z,,, x ··· xZPL x Zp, x Zp, xZp, x · ·· xZPL.

Then

(a+jb)+(c+jd) = (a+c)+j(b+d)

5

(a+ jb) x (c + jd) = (ac- bd) + j(ad +be)

= 1/>-1{1/>(a)1/>(c) -1/>(b)1/>(d)} + N-1{1/>(a)1/>(d) + 1/>(b)1/>(c)}.

While the complex addition takes only two additions, the complex multipli­

cation takes four multiplications and two additions: the CRNS requires the same

number of additions and multiplications as the Gaussian integers.

1.3 Quadratic Residue Number System (QRNS)

The QRNS [3, 4] is- a variation upon the RNS which allows complex additions to

be performed with two RNS additions and complex multiplications to be performed

with two RNS multiplications. This enhancement is accomplished by encoding the

real and imaginary components into two independent components. Given a prime p

of the form p = 4k + 1 where k E Z then the congruence x 2 = -1 (mod p) has two

solutions in the ring Zp that are multiplicative and additive inverses of one another.

Let J and J-t denote the two solutions to the above congruence. Define a mapping

B(a+jb) = (z,z*)

z = (a+]b) (mod p)

z* _ (a-]b) (mod p).

Furthermore, the inverse mapping o-t: Zp X z,,-> Z,[j]/(]2 + 1) is given by

0-1(*) ?-1(+ ·.) +. < •)-1'·-1(*) ::,z =<~ :: z >p J ~ J z-:: >1,.

Suppose (::, z•), (w, w*) E z,, x z,. Tlteu t.lte a.ddit.iou and llllllt.iplication

6

operations in the ring < Zp x Z1, +, · > are given by

(z,z')+(w,w*) - (z+w,z'+w')

(z, z')(w, w') = (zw, z'w*).

For example, consider a QRNS system with moduli p1 = 5 and p2 = 13. Let

the Gaussian integersu,v E Z[j]/(]2+1) be given as u;, 5+j3, andv = 4+j3. In Z5

we have 31 = 2 and 3!1 = 3. It can be seen that 2 and 3 are additive and multiplicative

inverses of each other in Z5 and also satisfy the congruence x2 = -1 (mod 5). In

Z13 we have 32 = 5 and 32 1 = 8. Also, 2-1 = 3 (mod 5), and 2-1 = 7 (mod 13).

Therefore the QRNS representations of u and v are given by

0(u) - (z.,z:)

Zu = (< 5 + 313 >s, < 5 + 323 >13) = (1, 7)

< = (< 5- }13 >s, < 5 - 323 >13) = (4, 3)

O(v) - (zv,z~)

Zv - (< 4 + 313 >s, < 4 + 323 >13) = (0, 6)

z' - (< 4-313 >s, < 4-323 >d = (3, 2). v

The arithmetic operations in the QRNS are performed in the same manner as in the

RNS. For example:

O(u) + O(v) = (zu + Zv, z: + z:) = (zu+v' z:+v)

Zu+v = (< 1 +0 >s,< 7+6 >t3) = (1,0)

-· = (< 4 +3 >s,< 3 +2 >t3) = (2,.5) "'u+v

O(u)O(v) = (-- -'-')-(- -') -"u~v, ..:.lt.:.tl - -uv, -uv

"-'u·u = (< l · 0 >,, < 7 · G > "') = (0, :!)

7

Z~v = (< 4 · 3 >s, < 3 · 2 >13) = (2, 6) .

. For comparison, note that uv = 11+j27 and u+v = 9+j6. The QRNS representations

of uv and u + v are given as

O(u + v) = (I •I)
zu.+u' zu.+u

I
Zu+v = (< 9+}16 >s,< 9+]26 >13) = (1,0)

z:~v - (< 9-]16 >s,< 9 -]26 >13) = (2,5)

O(uv) - (I •I)
ZUV' zuv

I (< 11 +]127 >s, < 11 + }227 >n) = (0, 3) z.v -

z•l = (< 11 -]127 >s, < 11 -]227 >13) = (2, 6). uv

The above results for the QRNS representations 1.1(uv) and 0(u + v) agree with

1.1(u)1.1(v) and 1.1(u) + 1.1(v) computed in the QRNS representation. The isomorphism 1.1

is generally implemented by a combination of arithmetic elements and table lookup.

Since the z and z* channels are independent we are able to easily construct parallel

hardware to perform operations on both channels at the same time without any

communication between the channels. This parallelism allows us to easily perform

a complex addition or multiplication in one cycle. While parallel hardware would

allow us to perform a CRNS addition in one cycle, the multiplication in the CRNS

requires two additions and four multiplications. Using the same amount of hardware

as a QRNS multiplier-accumulator, a CRNS multiplier-acculnulator would take twice

as many cycles t.o complete a singl<! multiply-accumulate opN<).I.iou.

8

1.4 Galois Enhanced QRNS (GEQRNS)

The QRNS requires us to implement a multiplier which takes N bit inputs and pro­

duces an N bit output. The multiplier could be implemented using either a direct

implementation with modular correction or a lookup table. The primary disadvan-

tage of this is that despite the small size of the RNS adder, the multiplier is still

large. We may take advantage of the properties of Galois fields [5] to simplify the

implementation of an RNS multiplier.

For any prime modulus p there exists some a E Zp that generates all non­

zero elements of th~ field GF(p). That is to say {a' I i = 0, 1, 2, ... ,p- 2} =

GF(p) \ 0. Thus, we may uniquely represent all non-zero elements of Zp by their

exponents. These number theoretic logarithms may be added modulo p-1 to produce

multiplication: a<i+j>P-1 =< aiaj >p· Note that since zero is not an element of

G F(p) \ 0 the zero must be handled as an exception. Practically, this means that the

inputs must be checked before the number theoretic logarithm to determine whether

either one is a zero, and if one of the inputs is a zero, then the output of the multiplier

should be set to zero.

For example, suppose that p = 7. Then a = 3 generates GF(7) \ 0: {3' I

i = 0, 1, 2, 3, 4, 5} = {1, 3, 2, 6, 4, 5}. Suppose we wish to multiply 2 and 3. First we

would take the number theoretic logarithm of 2 and 3 to the base a = 3:

log3 (2) = 2 ~ 32 = 2 (mod 7)

log3(3) = I ~ 31 = 3 (mod 7).

In order to multiply 2 and 3 we now add the number theorct.ic logarithms modulo

7J- 1:

•). 'l -< •>2. ·>I > -< ·j<HI>, >--< •j'~ >-- (>" _, o - o) o) 7- ' 1- 0 1- •

9

The architecture of a GEQRNS multiplier is illustrated in Figure 1.1 without

the zero detection and handling indicated. The multiplier requires two duplicate

N-entry memories to perform the number theoretic logarithm, and an N + 1-entry

table to perform the modulo p- 1 correction and number theoretic exponentiation.

Note that while the modulo p - 1 correction and number theoretic exponentiation

represent two separate steps, they may be integrated into a single table. Typically,

the multiplicands will be converted to the GEQRNS number theoretic logarithm form

by the conversion engine which computes the residues of the integer inputs.

Figure 1.1: Block Diagram of a GEQRNS Multiplier

1.5 1-CRT

The £-CRT [1, 2] offers an alternative to the CRT which has the advantage of in­

tegrating scaling into the CRT and avoiding the need for a modulo M adder. The

L-CRT is computed by factoring !11 into a real scale factor V and an integer !If'= 2\

where k E z+, such that M = V M', and 0 < M' < M. Additionally, as for the

10

CRT, m; = Mfp;. The L-CHT is given as

Xs = {~lm; < m;-1x; >p; /VJ} (mod M'),

where l• j denotes the least integer or floor function. Since M' = zk where k E z+

we may compute the sum Xs using regular k-bit two's complement adders. The

lm; < m;-1x; >p; /VJ term for any fixed set of moduli is dependent only upon x;

and thus may be generated using a small, fast memory based table lookup. The

disadvantage of the L-CRT is that it may introduce an error into the computed Xs.

The error in the L-CRT is given by 0 :S: IX/V- Xsl < L. For front-end signal

-
processing applications this error is not critical since L ~ M. A block diagram of

two L-CRT engines is shown in Figure 1.2.

The L-CRT has the advantage of avoiding the modulo Madder required to im-

plement the 'true' CRT and provides a means of scaling without additional hardware.

For VLSI and discrete implementations this advantage is particularly important since

division, like multiplication, are space-time intensive and cannot be performed in the

RNS since it is division-free.

Residue
(mod p,)

z, z,*

21

Residue
(mod p,)

Residue
(mod p,)

21

L-CRT
(a)

z, z* z, z,*

7 7 7

Partial
CRT Table

21 21

L

(b) L-CRT

Figure 1.2: Block Diagram of L-CRT (a) and QRNS Augmented L CRT (b)

11

Part II

InvestiGATOR Array Processor Backplane

1~

Chapter 2

INTRODUCTION

2.1 Motivation

There exists a need for an environment appropriate to the task of developing ex­

perimental array processors. This need is indicated by the large I/ 0 requirements

and physical size of experimental array processors. Traditional environments such as

personal computers or larger systems such as the VME bus are not appropriate as

they lack adequate space and I/0 capabilities. Thus the motivation is established for

the development of a testbed for experimental array processors.

Additional capabilities are desirable. In particular, beyond the need to solve

physical form factor problems and I/0 bandwidth bottlenecks, there is an additional

desire that the system should be host independent. The ideal host interface for

achieving host independence is the SCSI interface. The SCSI interface exists on

all common personal computers and workstations. There also exist a number of

peripherals which may take advantage of the SCSI interface, thus allowing the testbed

to utilize a number of mass storage and data acquisition products.

2.2 Design Parameters

Given the motivation presented in the previous section, the design parameters are

described a.s follows. The control of the array processor and the SCSI interface require

substantial machine intdligene<~. Thus the sdecl.ion of a microprocessor is required.

11

The Motorola 68030 was selected since it is capable of sustaining block data moves

of approximately forty megabytes per second (at 20 MHz), and because of previous

design experience with the 68000 family. First generation SCSI controller chips such

as the NCR 8350 require substantial processor intervention in order to operate: each

byte transferred causes an interrupt to occur. Additionally, these first generation

SCSI controller chips were only capable of asynchronous operation at data rates of

approximately 1.6 megabytes per second while many hosts operate synchronously at

a maximum data rate of five megabytes per second. A second generation device was

selected, the Western Digital33C93A. The WD33C93A (second sourced by Advanced

Micro Devices and sometimes referred to as the Am33C93A) executes SCSI commands

independently of the host processor and is capable of transmitting large quantities

of data without host intervention. For purposes of debugging, the array processor

testbed also features RS-232C serial communications.

Memory requirements for the testbed are modest. The testbed need only

buffer data transactions between the host and array and perform some translation

of commands from the host to the array. Thus it was determined that the testbed

processor would only require one megabyte of high speed RAM and 128 kilobytes

of ROM. Since the processor typically is moving large, contiguous blocks of data

between the SCSI processor and the array processor, a memory architecture which

performs well in block operations is desirable. A dynamic RAM variant called static­

column RAiVI (SCRAM) is particularly well suited to this task. The SCRAM is

fundamenta.lly a standard DRAM, however, once the row address has been latched

into the deYice, the device operates as a static RAM for all subsequent accesses

to that rOll' of memory. These accesses may occur until refresh is required. The

advantage t.o this means of I!JelliOry operation are t.hat. a 70 ns device offers 35 ns

15

access times during static column operation. The static column mode of operation

is synergistic with the 68030's burst mode of operation. Using the burst mode of

operation the 68030 may read four longwords with reduced penalty. In particular, in

the burst mode of operation, the worst-case first word read time is two clock cycles (at

20 MHz, Tcycle = 50ns). Subsequent accesses in non-burst mode still execute in two

clock cycles. Subsequent burst-mode accesses execute in one clock cycle. Thus, the

maximum memory bandwidth without burst access is forty megabytes per second,

while the maximum memory bandwidth with burst access is sixty-four megabytes per

second.

Chapter 3

IMPLEMENTATION

This chapter describes the implementation of the InvestiGATOR array pro­

cessor testbed. The description is broken into modules reflecting the various major

components of the backplane: the CPU, the memories, the I/0 components, the

array interface, and remaining miscellaneous material.

3.1 Architecture

The InvestiGATOR backplane and SCSI control processor is constructed from sev­

eral discrete blocks. These blocks may be divided into four groups. The first, the

CPU is based upon the Motorola MC68030. The second, the memory, consists of

one megabyte of high performance static-column RAM, and 128 kilobytes of low

performance EPROM. The third group is the I/0 module which includes a high per­

formance SCSI port, dual RS-232C serial ports, and an I/0 expansion port. The

fourth group is the array bus and interface. A block diagram of the InvestiGATOR

is shown in Figure 3.1.

The SCSI port is a single-ended, eight-bit implementation supporting syn­

chronous transfers up to five megabytes per second. The SCSI port has a local

thirty-two kilobyte buffer which allows the central processor to operate without in­

terference while transfers are underway. SCSI packets may be transferred either to or

from the InvestiGATOR with as few as two interrupts of the central processor. This

autonomous opemtion allows the CI'U to dedicate a larg<· p<~rcentageof its processing

17

5.0 MB/s SCSI Port
Slot

(Am33C93A)
r- MC68030

I
~I -fQJ--~ Slot ~

9.6 kb/s I _:9.6 kb/s SIO Port r- ~ (Z85C30) ~ Slot ~
I

1 MB SCRAM -
1/0 Expansion

(256Kx32)
-

Port

128KB EPROM - I
(128Kx8) y Slot ~

Figure 3.1: Block Diagram of the InvestiGATOR Array Processor Testbed

budget to servicing the attached experimental array processor.

The serial port supports two RS-232C channels with programmable baud rates

of up to 9600 bps. The serial port is intended to act primarily as a debugging tool.

The I/0 expansion port has a full thirty-two bit data bus, twenty-bit address bus, and

interrupt capabilities. This bus may be used to attach data acquisition, additional

I/0 capabilities, or memory.

The RAM block is based upon static-column RAM supporting synchronous

and burst-mode accesses. This memory offers very high performance in block trans-

fers.

3.2 CPU Module

This section describes the generation of the various signals which are used in the

CPU module to service the l'I'!CGSO:JO, and signals which are used to interface with

external devices and busses. This section refers to schematics which are found in

Appendix A. A block diagram of the CPU JrHHillle with il.s major subsystems is

shown in Figure 3.2.

SCSIIRO
SIOIRQ

IOIRO
ARRAYIRQ

---+

-

Interrupt
Control

RYST IOxD'[-
ROMDT RAMST
SIODT

SCSIDT

Bus Cycle
Termination

DSACKx STERM

IPLx
MC68030

y y
Control, Data, Address

Buses

BERR Bus Fault
Logic

Address
Decoding

ROM, 1/0, RAM, Array
Address Space Signals

Figure 3.2: Block Diagram of CPU Module

3.2.1 Cache Control

18

The MC68030 provides a mechanism whereby external circuitry may indicate to the

68030 which addresses are cachable, the cache inhibit input, CIIN*. CIIN* is gener­

ated by PALO and inhibits the cache when accessing the 1/0 and array addressing

spaces. Additionally, the 68030 provides a means for disabling the cache from ex­

ternal hardware, primarily for debugging purposes. This is the cache disable input,

CDIS*. CDIS* may be asserted or negated using switch S3.

The primary reason for the selection of the MCGSO:!Q as the control proces-

sor of the InvestiGATOR was its on-chip instruction/data cache and burst cache

fill mechanism. The 68030 provides a means of bursting four longwords of instruc-

19

tions or data into the cache. This is accomplished using the MC68030's cache burst

request/acknowledge (CBREQ* /CBACK*) handshaking protocol. When the 68030

runs a bus cycle in which it can execute a burst fill of the cache it asserts the CBREQ*

signal. If the addressed device wishes to proceed with a burst fill of the cache it must

acknowledge the burst request with CBACK*. In a zero wait state system the 68030

can read four longwords in eight cycles (i.e., forty megabytes per second) using stan-

dard bus cycles while the same four longwords can be read in five clock cycles (i.e.,

sixty-four megabytes per second) using burst mode. There is support for burst filling

of the cache from the RAM module only (see Table 3.2). A burst acknowledge on the

part of the RAM module is passed through a D flip-flop clocked 180 degrees out of

phase with the 20 MHz system clock in order to stretch the CBACK* signal.

3.2.2 Interrupt Control

The MC68030 provides a seven level prioi·itized interrupt mechanism using the IPL0-

2* signals. PALl provides priority encoding of the various interrupt signals generated

in the InvestiGATOR. The majority of the signals are provided to I/0 devices, how­

ever, there is also an interrupt line reserved for the array bus. The prioritization of

the interrupt sources is given below:

I Request Priority I Description

7 NMI (Non-Maskable Interrupt). Reserved.
6 SCSI Port.
5 Reserved.
4 SIO port.
3 Reserved.
2 l/0 Bus.
1 Array Bus.

Table :l.l: luterrupt Priority LcvelH

20

The InvestiGATOR uses the MC68030's interrupt autovcctor mechanism to

vector interrupts. This is accomplished by asserting the AVEC* input of the 68030

when an interrupt acknowledge cycle is executed. AVEC* is generated by PALO using

a clocked output. AVEC* is asserted when PALO detects an interrupt acknowledge

cycle. The 68030 also provides one additional signal related to interrupts, the !PEND*

(interrupt pending signal). The !PEND* signal is not used by the InvestiGATOR.

3.2.3 Address Space Decoding

-Address space decoding is provided by PALO. PALO decodes four primary address

spaces: RAM space, ROM space, I/0 space, and array space. These address space

signals are address strobe qualified. This address space arrangement consumes sixty­

four megabytes of the four gigabyte available address space, however, the sixty-four

megabyte space is repeated (i.e., A26-A31 are ignored). Accesses to memory spaces

besides program and data space are ignored (with the exception of interrupt acknowl­

edge cycles which run in CPU space) and will result in a bus fault after a timeout.

Address space decoding is summarized in Table 3.2.

I Address Range I Description

c Oh-lFFFFh ROM space.
20000h-FFFFFh 1/0 space.

B,C lOOOOOh-FFFFFFh RAM space.
1000000h-3FFFFFFh Array space.

C=cachable, B=burst cycle support.

Table 3.2: Address Space Decoding

21

3.2.4 Bus Cycle Termination

The 68030 provides two mechanisms for normal termination of bus cycles: asyn­

chronous termination and synchronous termination. Both means of termination are

supported by the InvestiGATOR. The synchronous termination mechanism is a high

speed termination mechanism for use with thirty-two bit data ports only. In practice,

only the RAM space and array space use synchronous termination. The MC68030's

synchronous termination input, STERM* is generated by taking the logical OR of

the two possible sources of synchronous termination requests, and then using aD flip­

flop clocked 180 degrees out of phase with the 20 MHz system clock to stretch the

STERM* signal, see Figure 3.3

RAMST'
MC68030

r-.----------1J a
ARYST'

C~L~K~2~0--------------~----------~CLK

Figure 3.3: STERM Signal Input and Conditioning

The asynchronous bus cycle termination mechanism allows for dynamic bus

sizing for eight, sixteen, and thirty-two bit ports. The asynchronous termination

signals, DSACKO* and DSACKl *, are provided by PALlA which generates the ap­

propriate DSACKs for various ports (primarily I/0).

3.2.5 Abnormal Bus Cycle Termination: Bus Error Control

It is possible to attempt to access addresses for which there is no corresponding

device. In this event it is necessary for external circuitry to l.c'nninat.e the bus cycle.

22

Additionally, it may be desirable to terminate an I/0 or array bus cycle with an error

condition. Bus cycles may be terminated with a fault condition by assertion of the

MC68030's BERR* signal. Assertion of the BERR* signal is controlled by the BERR

control state machine, located on MACH2. This state machine tracks bus cycles and

asserts BERR* when the I/0 or array busses request, or in the event of a timeout,

indicated by the trickle count output of an eight bit watchdog timer (counter). A

state machine diagram is given in Figure B.l.

3.2.6 Byte Select Signals

The CPU module provides byte select signals (UU*, UM*, LM*, and LL*) to external

modules by decoding the AO, Al, SIZO, and SIZl outputs of the 68030. These byte

selects are decoded by PALlA and are not qualified by the address strobe.

3.2. 7 Miscellaneous Signals

The InvestiGATOR does not support multiple bus mastering in the controller so the

BR* (bus request) input is negated. The BG* (bus grant) signal is ignored and

the BGACK* (bus grant acknowledge) signal is negated. The MC68030's memory

management unit may be disabled using the MMUDIS* input to the 68030. Access

to this signal is provided using switch S4.

3.3 Memory Module

This section describes the operation of the RAM and ROl\1 modules. The RAM ar­

chitecture is based upon a single thirty-two bit wide bank of iOns static column RAM

(SCRAM) wit.h a capacity of one megabyte. The SCRAl\1 controller is based upon

a high density PLD, the AMD Mach 110, with high resolution timing generated by

23

the AMD Am2971A programmable event generator (PEG). The ROM architecture

is based upon a single eight-bit wide bank of EPROM with a capacity of 128 kilo­

bytes. The ROM is only intended for SCSI control processor diagnostic and operating

code. Time critical code sections are moved from the ROM to the main memory, the

SCRAM. Microcode and data may be loaded from the host after boot. In situations

where the InvestiGATOR is being used as a standalone data collection unit microcode

might be loaded from a non-volatile semiconductor disk resident on the I/0 bus.

3.3.1 Static Column RAM

The InvestiGATOR contains a one megabyte bank of SCRAM. The SCRAM is used

as an alternative to standard DRAM because of its high speed access properties:

sequential accesses to the same column proceed substantially faster than an access to

the same speed rated standard DRAM. The SCRAM achieves no-wait-state operation

when operating in static column mode. This is an attractive property when coupled

with the 68030's burst mode and when one considers that the primary use for this

bank of RAM will be to perform SCSI block transfers.

There are penalties to pay for the high performance of the SCRAM: SCRAM is

fifty per cent to one-hundred per cent more expensive than standard DRAM, SCRAM

requires significantly more control logic than standard DRAM, and in the event of a

non-static column mode access, there is a substantial penalty to pay in cycling a new

row address. However, given the design constraints, the static column architecture is

the best solution.

The SCRAM architecture is composed of several components. There is the

SCRAM itself, data transceivers, address multiplexer, address cornparator, burst

count.e•·, n.fn•sh timer, high-time resolution sequencer, and byt.c select decoder. A

block diagram of the SCRAM architecture is shown in Figure 3.4.

AS
RAMST
CBREO
CBACK
RAMSP

Address

...........

-.

SCRAM
Controller

1
~ow Address
Comparator

Address
MUX

Event
Generator

~

SCRAM

~
Data

Figtire 3.4: Block Diagram of SCRAM Architecture

24

The burst counter serves to cycle the two lowest order bits of the address

during burst accesses. For example, if an access is a miss in the 68030's internal

cache, caching is allowed, and the target of the access supports burst mode accesses

then in order to keep latency (from the execution unit's point of view) minimal the

required word is read. Then the next longword address, modulo four, is read, and

so on until four longwords have been read. The burst counter is integrated onto the

PLD which contains the controller state machine.

The address comparator serves to allow the controller to determine whether

an access is a static column hit. The address comparator contains both a register

and a comparator so that the previous row address can be stored for comparison with

future accesses. Note that refresh cycles do not invalidate the register contents of the

address comparator. Validity of the contents of the address comparator is controlled

by the state of the RAS signal: the contents (and thus tl1e output) of the address

comparator are valid if and only if RAS is asserted.

The refresh counter is n. simple Pight bit counter whose trickle-count output

25

sets a refresh request to the controller state machine. The refresh counter issues a

refresh request 256 cycles (T=50 ns) after it is reset for a net of one request every

12.8 ms resulting in each of the 512 rows of RAM being refreshed every 6.6 ms,

meeting the required 8 ms refresh cycle period.

The controller issues commands to the sequencer to perform operations on the

RAM. The sequencer is an AMD Am2971A programmable event generator (PEG)

which is capable of generating sequences of signals with 10 ns timing resolution. Some

of the signals are ronted directly to their targets while others are routed through a

PLD which provides byte select coding, primarily for write operations. Additionally

the controller handles all handshaking with the CPU. The state machine must handle

a number of conditions:

• Refresh cycle

• Static column miss, read without burst

• Static column miss, read with burst

• Static column hit, read without burst

• Static column hit, read with burst

• Static column miss, write

• Static column hit, write

Examining the controller state machine diagram (see Figure B.3) we see that

the state machine implements the read sequences using a variety of shared state

sequences. By sharing state sequences we arrive at a much more efficient implemen­

tation of the controller state machine.

26

The following refers to Figure 3.5. The static column RAM device is dependent

upon four control signals: chip select (CS), row address strobe (RAS), write strobe

(WR), and output enable (OE). RAS, WR, and OE are generated by the PEG and

fed directly to the SCRAM devices while the CS signal is generated by the PEG it is

subject to byte select coding by PAL4 using the byte select signals (UU, UM, LM, LL)

generated by the CPU module. The data lines are buffered using four Am29C861A

CMOS bus transceivers under the control of the SCRAM controller state machine.

The address lines are multiplexed by a pair of Am29C827 A bus drivers acting as a

row/column address multiplexer under control of the controller via the PEG.

::>
0..
(.)

Mach210 - OER•
) Data Transceiver Control OET•

REFCLR•
CBREQ• Controller) Refresh Counter Control
As· State Reo·

RfW Machine CLKEW
) Address Comparator Contr

RAMSP•
HSA•

RESEr TRIG Am2971 A RAS•

ol

RAMCBACK• PA wE·

RAMST• BANKSEL• OP
Sequencer LOE•

yiNC,LATCH uoE·
A, ~: Address Counter -

I A
PAL16L8

A .I , ~
cs·

uu· uucs·

UM• 2 uMcs·
LM• LMcs•
LL• LLcs·

1 : Address Bank Decoder
2: Byte Select Conditioned Chip Selects

Figure 3.5: SClli\IVI Controller Architecture

The rcl'rcsh conntt•r operates in a free counting mod<', driven by the 20 MHz

27

system clock. Two-hundred fifty-six clock cycles (12.8 ms) after a counter reset

the trickle-count output (RCO) is asserted for one clock cycle which in turn sets the

refresh request SR flip-flop in the controller state machine PLD. After the completion

of the current memory transaction the controller resets the counter and the refresh

request SR flip-flop via the CLRREF signal and orders the PEG to execute a hidden

refresh cycle. Under worse case conditions a refresh request could suffer a response

latency of up to twelve clock cycles (600 ns). Thus, under these worse case conditions

a hidden refresh cycle might be executed every 13.4 ms implying a refresh of every

row of the SCRAM every 6.9 ms, still within the required 8.0 ms.

The controller handshakes with the CPU module via the AS, CBREQ, RAMSP,

Read/Write, CBACK, and STERM signals. The R/W, AS and RAMSP signals are

used in conjunction with additional address decoding provided by PAL4 (via the

BANKSEL signal from PAL4) to initiate memory transactions. The CBREQ/CBACK

handshaking pair is used to control burst cycles.

The controller orders the PEG to execute sequences using the PA2-0 and

TRIGx outputs. The PA2-0 signals provide an address to the PEG to determine

the starting point in its memory for execution while the TRIGJ/TRIGK outputs are

fed through a negative- edge triggered flip-flop to generate a trigger signal which will

arrive at a time when the PEG address inputs (PA2-0) are guaranteed valid and cause

the PEG to begin execution with minimal latency. The chip select signals generated

by the PEG are gated using the byte selects generated by the CPU module with

controller override via the CSALL signal. The PEG also generates the RAS, WR,

and OE signals used by the SCRAM. Additionally, the PEG controls the address

multiplexer via the AREG signals which control the output. cnahl<:s of the address

dri vcrs.

28

The address comparator is a combination register/comparator. The controller

causes the comparator to latch a new row address using the CLKEN signal. When

the address comparator determines that the row address at its input matches that

stored in its internal register it signals the controller using the HSA signal. Finally,

the data transceivers are controlled by the OER and OET controller signals.

The burst address counter is integrated into the controller PLD. This counter

is a simple two-bit counter with load and increment controls from the controller state

machine, load inputs Ail,O, and AOl,O. Negation of the load or latch and increment

controls implies a hold state. The outputs of this counter are fed through the address

multiplexer to the SCRAM array. Note that since the least significant bits of the

column address are fed through the burst address counter, the presentation of a new

column address to the SCRAM array is limited by both the address multiplexer and

the speed with which the address counter can latch a new address and present it to

the address multiplexer.

The SCRAM must be verified each time the power is applied. There are

standard algorithmic test methods which facilitate functional testing of the DRAM

and detection of common faults [6]. The standard test methods discussed in [6] are

targeted primarily at functional testing of DRAMs in VLSI testers, not testing of

the memory in circuit. These methods may be adapted with the addition of tests

to exercise the surrounding architecture. In particular, during testing of the first

InvestiGATOR board, a stuck-at fault (SAF) was discovered in one of the address

multiplexer buffers. A test to find SAPs in the address multiplexer buffers is given

in figure 3.6. Once the address multiplexers arc verified the data transceivers should

be verified. Note that malfunctioning data transceivers could potentially mask or

silllulatc an address multiplcxt•r Si\F, thus, spc•cial precaution should be taken in

29

the implementation of the address multiplexer SAF detection so as not to cause an

erroneous conclusion as to the status of the address multiplexers.

for i=O to n-1
M[O] :=0
M[2"i] :=1
if M[O] !=0 then there exists an SAO fault ~ bit i
M[0]:=1
M[2"i]:=O
if M[2"i] !=1 then there exists an SAl fault ~ bit i

end

Figure 3.6: Pseudo-Code for Address Multiplexer SA Fault Detection

Once the status of the surrounding architecture is verified, [6] suggests that

tests for unlinked SAFs, unlinked transition faults (TFs), unlinked coupling faults

(CFs), linked CFs, linked CFs and TFs, address decoder faults (AFs), and various

pattern sensitive faults (PSFs) be conducted. It turns out that two tests will provide

fault coverage for SAFs, TFs, AFs, linked CFs, linked TFs, unlinked idempotent, and

unlinked inversion CFs: the March C and March B algorithms.

Each march element of a march sequence consists of an arrow pointing up or

down, indicating the direction of march in address space, and a sequence of read and

write operations. For example, 1t indicates an address sequence from zero ton- 1,

while .(1. indicates an address sequence from n - 1 to zero. The March C algorithm is

given in Figure 3.7. The March B algorithm is given in Figure 3.8. Both the March C

and March B algorithms assume that an initial1t(w0) march is executed to initialize

the memory before the test algorithm is executed.

The most common PSFs which occur are neighborhood pattern sensitive faults

(NPSFs). NPSFs are faults where the writing of memory cells adjacent to a base cell

will cause an unwanted transition in the base cell. The cells most likely to effect a

30

{ lt(r,wl); 1f(r,w0); 1f(r); .t).(r,wl); .tJ.(r,wO); .t).(r); }

Figure 3.7: March C Algorithm for Memory Testing

{ lt(r,wl,r,wO,r,wl); lt(r,wO,wl); .tJ.(r,wO,wl,wO); .tJ.(r,wl,wO); }

Figure 3.8: March B Algorithm for Memory Testing

base cell - and thus expose an NPSF - are the four cells adjacent to the base cell

in the north, south, east, and west directions. A basic NPSF detection algorithm,

suggested by (6] is given in Figure 3.9.

write all base cells with zero;
for each base cell

apply a pattern;
read base cell and compare against expected value (zero);

end;
write all base cells with one;
for each base cell

apply a pattern;
read base cell and compare against expected value (one);

end;

Figure 3.9: A Basic NPSF Detection Algorithm

3.3.2 ROM Controller and Architecture

The InvestiGATOR contains a single bank of 12SK x 8-bit wide (128 kilobytes)

EPROM. This ROM is a low performance memory which contains basic firmware

for the InvestiGATOR and may contain some firmware for the array under test.

ROM read cycles are executed in tlm~e clock cycles yielding a net bandwidth of

6.67 megabytes per second. Code~ segments demanding higher perforrnancc may be

31

shadowed to the RAM space.

3.4 I/0 Bus and Devices

The InvestiGATOR supports an I/0 bus through which it communicates with the out­

side world. Currently the I/0 bus contains a SCSI controller, and a serial (RS-232C)

port. The SCSI controller utilizes the Western Digital 33C93A SCSI bus controller

chip and contains a thirty-two kilobyte data buffer. The serial I/0 controller uses the

AMD Z85C30 ESCC (Enhanced Serial Communications Controller) to provide two

channels of RS-232 I/0. Allowances are made for the addition of peripherals to the In­

vestiGATOR's I/0 bus. Some of the allowances include a wired-OR interrupt request

line and three data transfer acknowledge lines: one for each size data port supported

by the MC68030. The accessibility of the I/0 bus is intended to compensate for the

potential unavailability or unsuitability of a SCSI bus equivalent peripheral.

3.4.1 SCSI

The SCSI port is built around the Western Digital 33C93A SBIC (SCSI Bus Interface

Chip). The SCSI port is designed to use a form of I/0 called DBA (direct buffer

access) for data block transfers. Using DBA, the SBIC performs block transfers

directly to and from a thirty-two kilobyte local buffer memory without processor

intervention. This allows the SBIC to achieve its rated five megabyte/second data

transfer rates and allows the control processor to avoid the performance penalties

associated with interrupt servicing overhead. A block diagram of the SCSI port

architecture is depicted in Figure 3.10.

The SBIC operates in two modes during normal opemlion in t.he InvestiGA­

TOR: direct. addressing mode and DBA mode. In t.Ju, direct. addressing mode the

Data Bus

SRAM
(32Kx8)

SCSI

Bus

Figure 3.10: Block Diagram of the SCSI Port

32

processor performs transactions with the SBIC by using hardware assisted time mul-

tiplexing of the address and data to the SBIC address/data port. Direct addressing

mode contrasts with indirect addressing mode where the processor first would write

an address to the SBIC and then the next SBIC access would be performed on the

register whose address was written in the previous cycle. Indirect addressing mode

carries obvious penalties since two real accesses are required for every data transac-

tion. The SBIC normally is kept in a DBA stand-by mode: that is, whenever the

processor is not accessing the SBIC or RAM buffer the SBIC is in DBA mode. When

the processor attempts to perform a transaction with the SBIC or RAM the SBIC is

switched out of DBA mode so that the transaction may proceed.

In DBA mode the SBIC has control of the RAM buffer. Reads and writes

are accomplished using the SBIC read enable and write enable signals. Since the

SBIC has no means of handshaking with external logic when performing individual

transactions with the buffer RAM, it is up to the control architecture to ensure

that the transaction meets the SI3JC's timing requirements. Additionally, the SBIC

provides no direct control of the address counter; rath<~r, the control of the counter is

implicit. After each buffer read or writ<' op<'ration, the counter must. be incremented

3:3

by the external hardware. The control logic determines when to increment the counter

by observing the read and write strobes. Address counter control in DBA mode is

performed by observing the RE and WE strobes which are controlled by the SBIC in

this mode.

The SCSI-2 specification gives a list of commands which a processor on the

SCSI bus can implement. Some of the commands listed are optional while others are

mandatory under the SCSI-2 specification. A table of these commands and whether

the InvestiGATOR responds to the commands is given in Table 3.3.

Command Name Notes

0 Change Description Not Implemented.

0 Compare Not Implemented.

0 Copy Not Implemented.

0 Copy and Verify Not Implemented.

M Inquiry

0 Log Select

0 Log Sense

0 Read Buffer Used to read program memory and control

store.

0 Receive Used to transmit command and data packets

to InvestiGATOR.

0 Receive Diagnostic Results Used to retrieve diagnostic results.

M Request Sense

M Send Used to receive command and data packets

from InvestiGATOR.

M Send Diagnostic Used to request diagnostics to be performed.

M Test Unit Ready

0 Write Buffer Used to load program memory and control

store.
0-o tiona! p M-mandator • a.ccordin ,. to SCSI-2 definition.), g

Table :L:l: SCSI-:2 Connnand Set

34

3.4.2 SIO

The serial I/0 interface is provided for software development and diagnostic purposes.

The serial controller is based upon an AMD Z85C30 Enhanced Serial Communications

Controller (ESCC). The ESCC-I/0 bus interface is composed simply of an eight-bit

buffer and a PAL-based controller.

The ESCC supports two channels of serial communications and independent

baud rate generation. Two channels of serial I/0 are supported by the InvestiGATOR

since the additional cost is minimal. In the case of the InvestiGATOR the baud rate

is generated by dividing down the 10 MHz system clock to the appropriate baud rate.

The baud rate is programmed by providing a time constant for each channel. The

time constants appropriate to some common baud rates assuming fcLK=10 MHz,

and a clock multiplier of sixteen are provided in Table 3.4.

I Desired Baud I Time Constant I Actual Baud I Per Cent Difference I
300 1044 299.904 -0.032

1200 262 1201.92 0.159

2400 132 2403.85 0.158

4800 67 4807.69 0.155

9600 35 9469.70 -1.296

19200 18 19531.3 1.510

Table 3.4: Time Constants versus Baud Rates for Enhanced Serial Communication

Controller

The ESCC's registers are mapped in I/0 space as described in Table 3.5.

The serial ports are bwught out to Dl39 connectors on the back of the In-

vestiGATOR. The signals arc translated via the RS-232C level compatible MC1448

transmitter and MCH'l9 receiver. This transmitter/receiver pair WilB chosen for its

robustness. The pinout of th<• lnvcstiGi\TOH.'s serial ports is non~standard and de-

35

I Address I Description

20800h Channel B Control Register.
20801h Channel B Data Register.
20802h Channel A Control Register.
20803h Channel A Data Register.

Table 3.5: Enhanced Serial Communication Controller Register Memory Map

picted below in Figure 3.11.

Figure 3.11: InvestiGATOR Serial Port Pinout

A cable suitable for connecting the InvestiGATOR to an IBM PS/2 host

was constructed according to the diagram in Figure 3.12.· The cable is suitable for

XON/XOFF flow-control protocol and is not suitable for hard wire (i.e., REQ/ ACK

or RTS/CTS) protocols. Note that the InvestiGATOR end of the cable does not

have the usual data set ready (DSR) and ring indicator (RI) inputs. Furthermore,

the InvestiGATOR does not offer a protective ground (PGND) input. The protective

ground wire from the terminal side of the cable should be connected and provide

grounding for the cable shielding. However, the signal ground (SGND) is connected.

3.5 l/0 Expansion

The I/0 expansion connector is intended to allow unforeseen problems to be ad-

dressed. The 1/0 expansion connector is •napped to the to 1/0 address space and

36

DB-25 DB-9

Rl(22) DTR(9)
DSR(6) +--J
RTS(4) DCD(6)
CTS(S) ~
DCD(S) RTS(3)

4 CTS(2)

Rx(3) Tx(S)
Tx(2) Rx(7)

SGND(7) SGND(1)

PGND(1)

Figure 3.12: InvestiGATOR to IBM PS/2 Serial Cable

may be used with eight, sixteen, and thirty-two bit data bus sizes. Wired-OR lines

are provided for asynchronous bus cycle termination and interrupts. The port is fully

buffered and the address lines and control lines are always turned on, thus allowing

the I/0 expansion connector to be used to probe system activity. A list of signal

names, pin numbers, and description of the signals' functions are given in Table 3.6.

I Pin Number I Signal Name I Description

0-31 D31-0 Data bus.
32-51 A19-0 Address bus.

52 AS* Address strobe.
53 DS* Data strobe.
54 IOSP* I/0 address space flag.

5.5 IOSDTACK* Eight bit port DTACK.
56 I016DTACK* Sixteen bit port DTACK.
57 I032DTACK* Thirty-two bit port DTACK.
58 IOIRQ* I/ 0 expansion port IRQ line.

Table 3.6: I/0 Expansion Connector Signa.ls

:37

3.6 Array Bus

The array bus is a connection rich environment. Previous experience and analysis

has led to the conclusion that interboard connectivity was lacking in traditional host

environments such as the PC-XT, PC-AT, EISA, MicroChannel, VME, and others.

The InvestiGATOR has a 324 signal connector. Seventy-five of the signals

on this bus are allocated for a memory mapped interface to the MC68030 SCSI

control processor. These signals are fixed in terms of arrangement and function. The

remaining signals are broken up between near-neighbor connections and broadcast

connections which are functionally undedicated a priori. One-hundred forty of these

signals are wired as near-neighbor connections where seventy of the signals go to

the right adjacent slot and the remaining seventy go to the left adjacent slot. The

remaining one-hundred nine signals are wired as a broadcast bus to the array. All

of the near-neighbor connections are array broadcast connections are invisible to the

MC68030 CPU. A breakdown of the allocation of these signals is listed in Table 3.7.

3.6.1 CPU to Array Bus Interface and Architecture

The CPU is interfaced to the array bus via a memory mapped interface using a total

of seventy-five signal lines on the backplane connector. The interface to the array

bus buffers the CPU signals and passes all signals necessary for data and instruction

transactions to take place. A breakdown of the allocation of these signals is listed in

Table 3.7.

This interface does not support alternate address spaces via the 68030's func­

tion code (FCx) outputs, dynarnic bus sizing (i.e., all ports are thirty-two bits), nor

does it support burst mode accesses. Each slot has its own STEllM signal which is

routed to the CPU by the interrace. STEHI\1 validity is ascertained by observation

as

of the SLOTENx signals. Each slot has a wired-OR SLOTEN (active-low) signal

which is held high if a card is not present in a slot. If a card is present and needs

to be able to assert STEil.M then it must assert the SLOTENx signal by wiring the

signal directly to ground. The STERMx and SLOTENx signals are unique at each

connector and are hidden from the other slots.

The array bus error (ARYBERR) and interrupt request (ARYIRQ) signals

are wired-OR. ARYBERR causes a BERR cycle to be executed by the 68030, while

ARYIRQ requests a level one priority 68030 IRQ.

3.6.2 Local (Near-Neighbor) Connections

The local slot connections consist of seventy· signal lines to each adjacent slot. While

these connections are not predefined, they are adequate to implement a sixty-four bit,

bidirectional communication port or a pair of thirty-two bit unidirectional ports to

each adjacent slot. These signals are unused in the Gauss machine implementation,

but will be used in a future TMS320C40 hypercube implementation.

3.6.3 Array Broadcast Bus

The array broadcast bus consists of the remaining 109 signal lines not used in the near­

neighbor connections or the CPU-array interface. Like the near-neighbor connections,

the broadcast connections are not defined a 1n·io·ri. These connections are intended

to handle control and data distribution. The assignment of these signals for the Gauss

machine is discussed in Section 6.2.

39

3. 7 Support Circuitry

This section describes the miscellaneous modules that provide the critical support

functions which are not a proper part of any of the major modules of the architecture.

3.7.1 Clock Generator Module

The clock generator module consists of three components: the crystal time base,

the clock generator, and a low-skew buffer. The crystal timebase is a 40 MHz TTL

compatible clock. This clock drives an AMD Am2971A PEG (Programmable Event

Generator) which produces phase locked versions of 2 MHz, 5 MHz, 10 MHz, and

20 MHz clocks. Finally, since the PEG has a relatively low power output drive, the

clock signals are buffered by an AMD Am29C827 A high-speed CMOS bus driver. The

Am29C827 A features low tpv, low skew, and "edge-rate control" which is intended

to minimize ground bounce.

The clock module produces one copy each of the 2 MHz and 5 MHz clocks, two

copies of the 10 MHz clock, and six copies of the 20 MHz clock. The various copies of

the 20 MHz clock are reserved for distribution to different modules, with the intent of

minimizing clock skew within each module. The clock distribution reservation table

is shown in Table 3.8.

3. 7.2 Reset Circuit Module

The reset circuit module contains power-up and on demand system reset circuitry.

Power-up reset is provided by a Texas Instruments TL 7705A Power Supply Supervi­

sor/Reset Generator. The power-up reset circuit monitors system power and asserts

the RESET signal for an amount of time conl.rolled by Cl. Cl has been chosen to

be greater tha.n 40t<F, thus, RESfo:T will b<' ass<•rted for at i<•a.st 500 ms after the .5V

40

supply rail reaches within ten per cent of 5V.

The reset signal provided by the TL 7705A is buffered into the wired-OR sys­

tem RESET* signal by an open-collector inverter. The reset circuit contains a reset

switch connected to the system RESET* signal.

41

I Pin Number I Signal Name I Description

1 SLOTENx* Slot enable. Wired-OR.

2 STERMx* Synchronous bus cycle termination.

3 ARYDS* Data strobe.

4 ARYAS* Address strobe.

5 ARYR/W Read/write strobe.

6 ARYUU* Upper byte select.

7 ARYUM* Upper-middle byte select.

8 - ARYLM* Lower-middle byte select.

9 ARYLL* Lower byte select.

10 ARYARYSP* Array address space select.

11 ARYRMC* Read-modify-write signal.

12 RESET* System reset.

13 HALT* System halt.

14-45 D31-0 Data bus.

46-75 A29-0 Address bus.

79 CLK20C 20 MHz system clock.

81 CLK10B 10 MHz system clock.

83 CLK5 5 MHz system clock.

85 CLK2 2.5 MHz system clock.

77,82,84,87 Vee 5 V power bus.

76,78,80,86 GND Ground rail.

88-? - Near neighbor connections.

Odd pin numbers to left slot.

Even pin numbers to right slot.

?-324 - Broadcast bus.

Table 3.7: Array 13us Signals

~2

Signal I Frequency I Reservation/ Availability I
GLK2 2 MHz Unallocated

CLK5 5 MHz Unallocated

CLK10a 10 MHz I/0 module

CLK10b 10 MHz Array module

CLK20a 20 MHz CPU module

CLK20b 20 MHz I/0 module

CLK20c 20 MHz Array module

CLK20d 20 MHz RAM module

CLK20e 20 MHz ROM module

CLK20f 20 MHz Unallocated

Table 3.8: Clock Reservation

Chapter 4

SOFTWARE

The InvestiGATOR's firmware is written primarily in C. Besides being readily

available for the 68030 architecture, the C language offers high level language ben-

efits of compactness and ease of use combined with some of the benefits associated

with assembly language, mainly control and speed. The InvestiGATOR firmware is

modular in nature, composed of a kernel, SCSI bus interface (SBIC) firmware, serial

I/0 (SIO) firmware, and interface code to the target processor, the Gauss machine.

A block diagram of the software architecture is shown in Figure 4.1.

I Kernel

t t t
I SBIC Firmware I I SIO Firmware I Target Array

Interface Firmware

t
ISBIC (Am33C93A) I I SIO (Z85C30) I Target Array

Figure 4.1: InvestiGATOR Software Architecture Block Diagram

4.1 Kernel

The primary mission of the kernel is to manage resources and control dispatch of

tasks to the various subsystems. The key resource which is managed by the ker-

ncl is memory. Tl~e kernel also n1anages the dispatch of interrupts to the various

44

subsystems.

4.2 SBIC Firmware

The SBIC firmware is responsible for managing the substantial SCSI protocol. The

following sections introduce the operation of the SCSI bus and the structure of the

SBIC firmware.

4.2.1 SCSI Bus Operation

The SCSI bus has four phases of operation. The SCSI bus idles in the bus free

phase. When a device wants to gain control of the bus, the bus enters the arbitra­

tion phase. During the arbitration phase all devices attempting to gain control over

the bus arbitrate for the bus. The device with the highest SCSI ID wins the arbi­

tration. After successful arbitration the bus enters the selection phase. During the

selection phase the SCSI bus master attempts to select the device with which it wants

to communicate. After successful selection the bus enters the information transfer

phase. The information transfer phase is characterized by the transfer of commands,

data packets, and messages. A flow diagram of the SCSI phases is shown below in

Figure 4.2.

There are two types of devices on the SCSI bus: initiators and targets. Initia­

tors are typically host processors while targets are typically peripheral devices such as

disk drives. The InvestiGATOR operates as a target. The InvestiGATOR responds

to the commands test unit ready, request sense, send and receive. These operation

of the these commands are shown in Figures 4.3-4.6.

The test unit ready command is used to query t.he t.arget device as to its

sl.atus. This command is mandated by the SCSI sl.<tnda.rd. The InvestiGATOR will

45

Figure 4.2: SCSI Bus Phases

respond with a goo~, check condition, or busy status code. The good status code

indicates that the InvestiGATOR is ready and standing by for a command. The

check condition status code indicates that the InvestiGATOR is not ready and has

additional status information available. Finally, the busy status code indicates that

the InvestiGATOR is busy. The transactions required to execute a test unit ready

command are shown in Figure 4.3.

Initiator (Host) Target (InvestiGATOR)

Acquire Target & Transmit Command

1) Win arbitration
2l Select tar¥et
3 Transmit EST UNIT READY Respond to Command

1) Transmit {GOOD I CHECK CONDITION I
BUSY) status
2} Transmit COMMAND COMPLETE

Finish Transaction message

1) Release bus

Figme 4.3: Test Unit Ready Command Operation

The request sense command is used to query the device for extended status

data. Typically, the requc•st sense command is executed after" check condition status

46

is returned on a command. The transaction model for the request sense command is

shown in Figure 4.4.

Initiator (Host) Target (InvestiGATOR)

Acquire Target & Transmit Command

1) Win arbitration
2) Select tar~et
3) Transmit EOUEST SENSE Respond to Command

1) Enter DATA IN phase
2) Transmit sense data
3~ Transmit GOOD status
4 Transmit COMMAND COMPLETE

Finish Transaction message

1) Release bus

Figure 4.4: Request Sense Command Operation

The send and receive commands are the primary data communication com-

mands between a host processor and the InvestiGATOR. The transaction models for

the send and receive commands are shown in Figure 4.5 and Figure 4.6.

Initiator (Host) Target (InvestiGATOR)

Acquire Target & Transmit Command

1) Win arbitration
2) Select tar~et
3) Transmit END Respond to Command

1) Enter DATA OUT phase
2) Transmit data
3) Transmit {GOOD I CHECK CONDITION I

Finish Transaction
BUSY} status
4) Transmit COMMAND COMPLETE

1) Release bus

Figure 4.5: Send Command Operation

47

Initiator (Host} Target (InvestiGATOR)

Acquire Target & Transmit Command

1) Win arbitration
2j Select tar~et
3 Transmit ECEIVE Respond to Command

1) Enter DATA IN phase
2~ Receive data
3 Transmit{GOOD I CHECK CONDITION I
BUSY) status

Finish Transaction 4) Transmit COMMAND COMPLETE

1) Release bus

Figure 4.6: Receive Command Operation

4.2.2 SBIC Firmware

The SBIC operates under an interrupt driven protocol. This subsection discusses

the flow diagram of the SBIC reset routine and the interrupt service routine (ISR)

depicted in the flow diagram of Figure 4. 7.

Before the SBIC can be used, it must be initialized via a software interrupt.

The SBIC is preloaded with the SCSI address of the InvestiGATOR before a software

reset is executed. After the reset completes, interrupts and data I/0 modes are

programmed. Initially, the InvestiGATOR is set to SCSI address 4 and uses interrupt

drive I/0.

The InvestiGATOR operates only as a target in the initial configuration. The

InvestiGATOR does not support disconnectjreselection at this time so the firmware

is fairly simple. The SBIC interrupts the processor with a service required interrupt

when an initiator on the SCSI bus selects the InvestiGATOR. Selection may occur

either with the attention (ATN) signal asserted or negated: ATN asserted indicates

that there is a message pending. Selection with attention is used exclusively to

request that the target. accept. an !Dl~NTIFY message. The InvestiGATOR does not

48

currently support the IDENTIFY message, and thus selection with attention leads
to a fault condition.

After the SBIC ISR identifies a selection without attention condition, the
ISR prepares the SBIC to receive a command from the initiator. Currently the
InvestiGATOR only supports a SCSI command set which is (coincidently) limit ted
to those commands which have six byte command frames. Thus, a transfer count of
six is loaded into the transfer count register and a RECEIVE COMMAND command
is issued to the SBIC. The SBIC then receives a command from the initiator.

If a data phase is required by the command received from the initiator then
the SBIC is prepare_d for a data phase by setting the synchronous transfer control
register and the transfer counter register and issuing a send or i·eceive data command.

If the command received was a linked command then a SEND STATUS com­
mand is issued to the SBIC and the execution returns to the RECEIVE COMMAND
phase. If the command was not a linked command then a SEND STATUS AND
COMMAND COMPLETE command is issued to the SBIC, causing the last com­
mand's status to be transmitted to the initiator and the SBIC to disconnect.

4.3 SIO Firmware

The serial port is operated in an interrupt driven I/0 mode. The SIO drivers sup­
port circular transmit/receive buffers which aid in increasing system throughput and
allowing type-ahead. The XON/XOFF flow control protocol is the only flow control
protocol currently supported. In the current implementation serial port A is the
console (stdinjstdout) while serial port B is unassigned.

""-' JDF;NTifY Ml55111je
Not SYwo.-ted

N

N

Figure 4.7: SBIC Interrupt Service Routine Flow Diagram

49

Part III

Gauss Machine

50

Chapter 5

INTRODUCTION

The Gauss machine is a 2 x 2 systolic array processor comprised of three

seven-bit GEQRNS channels for a total of six seven-bit RNS channels. The array

of processors is arranged in a mesh-connected topology with unidirectional dataflow.

Alternately, the Gauss machine may be configured to utilize two of its processors as

a vector processor. The Gauss machine excels in computation of level 3, level 2, and

level 1 operations.

5.1 Motivation

The design of the Gauss machine is motivated by several factors. There exists a

need for high-performance front-end signal processors which are reliable, small, con­

sume minimal power, and are relatively inexpensive. Typically, high performance is

achieved using a combination of fast processors coupled with some parallelism. Sig­

nal processing applications have been demonstrated to be particularly amenable to

systolic array implementations[?]. Traditional technologies have typically featured

large, multiple package designs where individual processors were made up of several

large VLSI devices[8]. Even new, state-of-the-art processors designed for parallel

processing, but based on conYentional arithmetic technology such as the iWarp[9] or

TMS320C40(10] have at least one large package per processor element. These designs

typically had large physical form factors, high power consumption (multiple watts

per processor), and low reliability. At.l.<!rnpt.H to improve reli;\bility by incorporat-

52

ing redundancy typically result in little improvement at the expense of greater than

one-hundred per cent in terms of hardware, power, size, and cost.

Processor architectures based upon residue arithmetic are uniquely qualified

to meet the demanding needs of modern signal processing systems. The RNS is a high

performance system of arithmetic having performance which is independent of word­

width. The RNS features relatively small die area when compared with conventional

arithmetic. The RNS is inherently fault and defect tolerant[3, 4], and may realize the

full potential of VLSI systolic arrays[7].

5.2 Design Parameters

Currently, there are no RNS systems which are general purpose in nature. Most RNS

systems are hard-wired to a specific task. There exists a need to demonstrate an RNS

system which is more general purpose in nature. This RNS system must be capable

of many different operations. Additionally, there is motivation to demonstrate the

use of the RNS in systolic array architectures.

The Gauss machine is designed as a discrete prototype of a 2 X 2 x 6 VLSI

systolic array of GEQRNS multiplier-accumulators. The array is hosted by the In­

vestiGATOR array processor testbed. Data conversion functions are provided by the

InvestiGATOR. The array controller is a microprogrammed controller based upon a

single chip microsequencer.

Chapter 6

IMPLEMENTATION

6.1 Architecture

The Gauss machine supports a three channel GEQRNS or QRNS, 2 x 2 array of seven

bit multiplier-accumulators. The array is formed by six boards, with each board

comprising a 2 x 2 array seven bit multiplier-accumulators. The array is integrated

into the InvestiGATOR array processor backplane with the addition of a controller,

and optionally, a forward-conversion and CRT engine board.

The Gauss machine supports a mesh connected geometry with north and east

flow of data. The array uses FIFOs to provide the means for data to be sequenced

through the array. The FIFOs are the gateway through which the array communicates

with the outside world. Additionally, the Gauss machine offers a vector mode of

operation which utilizes PEs (1,1) and (1,2) to perform Ievell and level2 operations

at higher performance levels than would be possible using the full array. A block

diagram is given below in Figure 6.1.

The FIFOs located on the periphery of the army meet the goal of allowing

concurrency in processing and dat.a I/0 since the memories may he loaded or emptied

as calculations proceed.

54

Figure 6.1: Block Diagram of Gauss Machine Array

6.2 Processor Implementation

Each processor element in the array (see Figure 6.1) consists of a multiplier, accumu­

lator, and support architecture. The inputs to the multiplier come from the X-bus

andY-bus. The X-bus is also connected to the F-bus, allowing the accumulator to be

pre-loaded, or the output of the adder may be output to the X-bus. A block diagram

of the processor element is depicted below in Figure 6.2.

D y
C1)
:::>
co D y
>- F Bus

D y
X Bus

>-
0

Figure 6.2: Block Diagram of Gauss Machine Processor Element

The arithmetic units in this discrete implementation are direct lookup tables

implemented in static RAM. In a VLSI implement<ttion these arithmetic units would

be implemented wit.h adders and Slllitll norvr lookup t<tbles. Additional architectural

55

enhancements are made to PEs (1,1), and (1,2) to allow these two processors to

operate as a very high throughput vector processor. The array architecture in vector

mode is shown in Figure 6.3. The augmented processor is depicted in Figure 6.4.

Figure 6.3: Block Diagram of Vector Mode Architecture

DYI--~

F Bus

X Bus

Figure 6.4: Augmented Processor Element

The X-bypass-bus of the enhanced PE is connected to the X-FIFOs, allowing

two operands per cycle to be deposited on each of the enhanced processors. The X­

escape bus of PE (1 ,1) allows the results to be flushed out of the processors in one clock

cycle. The vector enhancement allows the Gauss machine to perform Ievell and level

2 operations very efficiently, and while the enhancement does not allow an addition

of two operands to be perfonn('d directly, it may be performed in two cycles using

56

the accumulator. The vector processor can also perform pointwise multiplication of

two vectors using a single clock cycle per operand pair.

6.2.1 Processor Control Signals

This section lists the processor control signals and their function. The control signals

are registered on the processor boards. The signals are listed in Table 6.1.

The signals in Table 6.1 may be broken into several groups. These groups are:

• Address information: BA2-0, and PA2-0.

• FIFO Control< XIW*, YIW*, XOW*, XIR*, YIR*, XOR*, XIFLRT*, YI-

FLRT*, and XOFLRT*.

• Adder RAM Control: ROE*, ARWE*.

• Multiplier RAM Control: MROE*, MRWE*.

• X-Bus Control: XBOE*, XBEN*, XFEN*, AREN*, and AROE*.

• Y-Bus Control: YBEN*.

• Processor Structure Control: PREN*, and SREN*.

• Processor Configuration Control: VECTORMODE and ARITHMODE.

• Miscellaneous: CLR*, RESBWE*, and RESBRE*.

6.3 Controller Implementation

The Gauss machine uses a microprogra.mmable controller. The heart of the controller

is a single chip microsequencer with EPROM based microprogram store, the AMD

Am29CPL 154. The microcode store has a total of 512 words of microinstruction

57

storage. The microsequencer uses PLDs to decode its instructions for the array. The

architecture of the controller is depicted in Figure 6.5. The Gauss machine controller

has a pipeline delay model depicted in Figure 6.6.

Memory Mapped
InvestiGATOR

Interface

,- Status
Register

Command
Register f--+ Am29CPL154

~icrosequencer
f.-+ Command

Decoder
f-A rray

Figure 6.5: Block Diagram of Gauss Machine Controller Architecture

Microsequencer

Delay

Pipeline Register

Bus

Delay

Pipeline Register

Processor Array

"E
"' 0
Ill

~
0
Ill
~

0
(I)
(I)

"' " e
0..

Figure 6.6: Gauss Machine Pipeline Delay Model

In order to perform an operation on the array, the InvestiGATOR will load

some data into the array input FIFOs, and order the controller to perform the ex­

pected operation by writing a command to the command register. The InvestiGATOR

then monitors the status register in m·der to determine when the computation is corn-

plete. Then the lnvest.iGi\TOH retrieves t.he res11lt.s from the army output FIFOs.

58

This same method is used for programming the array multipliers and adders, except

that there is no need to read back any results.

The chosen microsequencer, the Am29CPL154 has a relatively narrow output

word (eight bits), yet the array has a substantial number of control lines as evidenced

by Table 6.1. Fortunately, this does not present a problem because there are only a

limited number of useful combinations of control signals. Therefore, the output word

of the microsequencer is used as a command code or instruction and is decoded into

the appropriate set of signals by the command decoder, see Figure 6.5.

6.4 Array Initialization

In order to perform useful operations on the array, the arithmetic elements must be

initialized. There exist enhancements which are not visible in the block diagram of

Figure 6.2 to allow programming of the multiplier. The adder can be programmed

without any architectural enhancements.

The multiplier and architecture related to its programming is depicted in Fig­

ure 6.7. Control signals are indicated in the block diagram. The multiplier memory

is addressed by the X-bus and Y-bus, and by the ARITHMODE signal. The multi­

plier data is loaded from the X-bus to the multiplier memory. Register output enable

signals are indicated by an OE suffix while latch enable signals are indicated by an

EN suffix. The write strobe for the memory is indicated by the MRWE* signal. The

MRWE* signal is broadcast to all processors in the system so all of the multipliers

must be programmed at the same time.

Programming of the multiplier proceeds as follows. The X- and Y- FIFOs are

loaded by the InvestiGATOR. The InvestiGATOR sends a conunand to the Gauss

machine controll<•1· to program a block of the multiplier memory. X- input FIFO

59

RAM MROE'

ARITHMODE r- A,. MRWE' A,.
(/)

A o •. a XBEN' :J

y~
Ill MJ

XBOE' >-jo
D y

r-x Bus I X FEN'
YBEN' >- XFOE'
YBOE'

0

Figure 6.7: Processor Multiplier Programming Model

transmits the contents of the memory location across the X- bus to a register which

outputs to the multiplier memory's data bus. Next, the address of the data word

to be programmed is propagated across the array from the X- and Y- input FIFOs

and the multiplier memory's write line is strobed. The process is repeated until the

multiplier is programmed.

The adder and architecture related to its programming is depicted in Fig­

ure 6.8. The adder is programmed as follows. The adder data and addresses are

loaded into the X- input FIFO. The least significant portion of the address is trans­

mitted via the X-bus to the product output registers, controlled by PROE* and

PREN*, with MROE* negated. Next, the most significant word of address is trans­

mitted and loaded into the accumulator register, controlled by SROE* and SREN*.

Finally, The actual data word is transmitted via the X-bus to the F-bus by way of

the buffer controlled by XPOE*, and to the adder memory's data port. The adder

memory write signal, ARWE*, is strobed, loading the dat.a into the adder memory.

This process is reJwatt•d nntil the adder is progranuned.

60

PROE•

PREW
SROE•

SREW
XFOE•

XFEW RAM ARITHMODE ,. A,.

~D y ':0 y~ A,.o
ROE•

rv.~o
ARWE•

yl xsoE· A,,.7

XBEW l D,.o
F Bus I ...

D y
X Bus XPOE•

Figure 6.8: Processor Adder Programming Model

6.5 Conversion Engine Architecture

The forward conversion engine performs the task of generating the residues of the

value input to the engine. This forward conversion is a relatively straightforward

process once it is seen that the process may be accomplished simply by breaking the

input values into a set of partial sums where each sum represents a range of bits of

that number; in other words, suppose we wish to compute the residue modulo p of

an L bit number N. We would note that the following congruence holds:

(mod p),

where a; E {0, 1} and are digits of the binary representation of N. Now, suppose

0 < J < !(< L - 1. Then

(mod p).

61

A (mod p) operation may be added after each partial sum without changing the

result:

[(J-1) (l\-1) (L-1)] < N >p= ~ a;2; (modp) + t; a;2; (modp) + ;; a;2; (modp) (modp).

This suggests that each partial sum, modulo p, can be computed using a small table,

and the partial sums added together to form a sum which must be corrected modulo p.

This is illustrated in Figure 1.2. In Figure 6.9a, conversion of a twenty-four bit input

using two tables of order 212 to produce an eight bit output is demonstrated. In

Figure 6.9b, the same conversion is accomplished using three tables of order 28
•

Partial Mod

12 Partial Mod

(a)

(b)

Figure 6.9: Forward Conversion Architecture

The forward conversion engine was not implemented in hat·dware since it would

be relatively expensive to produce it discrete implcmentittion. Instead, the forward

conversion engine Wits implemented with a software architecture inspired by the above

discussion. This was motivat.l'd by the low speed of it direct implementation of the

forward conversion using the standard sequence of divide, multiply, and subtract

operations. In particular, the multiplication and division operations are particularly

time consuming on the MC68030 (and most microprocessors). The source code in

Section D.5 of Appendix D implements a high speed forward conversion based upon

table lookup using small tables and minimal arithmetic (addition and subtraction

only).

Similarly, the CRT engine hardware was too expensive to implement; emula­

tion of the CRT was substituted. As for the forward conversion, the QRNS to CRNS

to Gaussian integer conversion was implemented using a fast, table lookup based

algorithm based upen the discussion in Section 1.3. The source code for this high

performance implementation is included in Section D.5 of Appendix D.

6.6 Application Programmer's Interface

6.6.1 Overview

The system software for the Gauss Machine is divided into two parts: firmware for the

backplane and the Application Programmer's Interface (API). This chapter describes

the API which contains routines for linear algebra and communication between the

host and the Gauss Machine. The API is written in THINK C 5.0 for the Macintosh.

The Application Programmer's Interface (API) contains roughly X subroutines

that facilitates programming of the Gauss Machine. The idea behind the API is to

provide fast prototyping environment for developing and testing new algorithms for

the Gauss Machine. Therefore, the routines are not necessarily optimized for speed.

The API can be divided into "high-level" and "low-level" calls. The high-level

routines often mimic Mat.lab statements, e.g., matrix-matrix, matrix-vector, vector­

vector multiplication is handled by one routine calbl mul t (). The low-level calls

63

implements the primitive operations from which the high-level routines are composed

of, such as, memory management and communication between the host and the Gauss

Machine. Furthermore, the algebra routines comes in two versions, one using floating­

point arithmetic and the other using integer arithmetic.

Typically, the development of an algorithm for the Gauss Machine consists of

the following steps:

• Program and test algorithm in Matlab.

• Port Matlab code into API calls.

• Test API code with the Gauss Machine.

• If optimization is of interest, rewrite code using the low-level API.

A complete listing of the API calls are found in Appendix X.

6.6.2 High-Level API Routines

Prototyping and testing signal processing/linear algebra algorithms are easily done

in interactive packages like Matlab, Mathematica, Maple and Monarch/Siglab. The

design of the high-level API was done with this in mind. The API routines imitates

Matlab function calls which makes it easy to port an m-file or a Matlab script to

a C program running on the Gauss Machine. The Matlab statements are simply

exchanged to the corresponding API calls and, with some glue code, the port is

complete.

The software was written in TIIINK C version 5.0 with the following libraries:

ANSI, MacTraps. The code was compiled and run on a !VIae Ilx, 4Mb RAM, 4Mb

virtual memory, System 7.0.

These are the THINK C settings under Edit, Options ...

• Language Settings

ANSI Conformance

Check pointer types.

Language Extensions

THINK C

Strict Prototype Enforcements

Infer Prototypes

• Compiler Settings

Generate 68020 instructions

Generate 68881 instructions

Classes are indirect by default

Methods are virtual by default

Optimize monomorphic methods

\bslash p is unsigned char[]

• Code Optimization

- Defer & combine stack adjust

Suppress redundant loads

Aut.omat.ic Register Assignment Debugging

64

Use source debugger

Use second screen

Always save session

These are the THINK C settings under Project, Set Project Type ...

Application

File type APPL

Partion (K) 384

Size Flags 0000

65

The software consists of 5 "library" files (with corresponding header files) and

one global header file:

types. h: Global type definitions.

list. c: Memory management routines. This software was originally written by

R. F. Starr, 2639 Valley Field Dr., SugarLand, TX 77479 and was published in

Dr. Dobbs Journal. list. c have been slightly modified.

ut ils. c: Utili ties.

conv. c: Floating-point to fixed-point conversion routines.

matrix. c: Floating-point matrix algebra routines, memory management.

int..matrix. c: Integer matrix algebra routines, memory management.

66

The routines in intJI\atrix. care identical to the routines in matrix. c except

for those operations that are not defined for integers, i.e., division.

In order to compile these files as parts of a code resource, change all calls of

malloc() to NewPtrO and free() to DisposPrtO. Furthermore, comment out the

stdio routines, i.e., printf() and friends, in utils.c. It may be also necessary to

change the ANSI library to the required library for code resources.

Note: Whenever the comments in the code and this document disagree, rely

on this document.

6.6.3 Macros and Constants

file: intJilatrix. c

#define COMP Ox4 I* marks compatible dimensions *I

#define SCAL Ox8 I* marks one operand as a scalar *I

#define INT(a) ((int)(a)) I* casts a to integer *I

#define EQDIM(a, b) ((a->rows == b->rows) && (a->cols ==

b->cols)) I* checks if a and b has the same dimensions *I

file: matrix. c

#define OOPS printf(oops: %d\n, __ LINE_); I* debugging macro *I

#define COMP Ox4 I* marks compatible dimesions *I

#define SCAL Ox8 I* marks one operand as a scalar *I

#define INT(a) ((int)(a)) I* casts a to integer *I

file: conv. h

#define max(a, b) (a > b) ? a b I* maximum of a and b *I

#define min(a, b) (a < b) ? a b I* minimum of a and b *I

file: int_matrix oh]

#define deref(type,x) *((type*)(x)) I* not really useful *I

file: matrix o h

#define SIZE(a) ((a)->rows * (a)->cols) I* computes number of

elements in matrix *I

-#define EQDIM(a, b) ((a->rows == b->rows) && (a->cols ==

b->cols)) I* checks if a and b has the same dimensions *I

#define cmul(a, b, c, d, e, f); a= (c) * (e) - (d) * (f); b =

(c) * (f) +(d) * (e); I* complex multiply *I

#define cabs(a, b) sqrt(((a) * (a) + (b) * (b))) I* compute

complex absolut value *I

file: types 0 h

#define INTTYPE long I* integer data type *I

#define FLOATTYPE double I* floating-point data type *I

#define NOERR 0 I* OK return code *I

#define CMPLX Oxl I* marks a complex value *I

#define REAL Ox2 I* marks a real value *I

file: utils_h

67

#define PLAIN OxO I* Plain format *I

#define MATLAB Ox1 I* Print in MATLAB style (with [] and ;) *I

6.6.4 Function Descriptions.

matrix *add(matrix *a, matrix *b)

description: Adds matrices a and b.

arguments: matrix *a, *b Input matrices.

returns: matrix * _The sum of a and b, NULL if error.

usage: sum = add(a, b); I* sum = a + b

matlab equivalent:

>> sum = a + b; *I

file: matrix. c

matrix *appendcols(matrix *a, matrix *b)

68

description: Returns a matrix with b's columns appended to a ([a, b]). Naturally, a and b

must have the same number of rows.

arguments: matrix *a, *b Input matrices.

returns: matrix * [a, b], NULL if error.

usage: c = appendcols(a, b); I* c = [a, b]

matlab equivalent:

>> c = [a, b] ; *I

file: matrix. c

matrix *appendrows(matrix *a, matrix *b)

description: Returns a matrix with b's rows appended to a ([a; b]). Naturally, a and b

must have the same number of columns.

arguments: matrix *a, *b Input matrices.

returns: matrix * '[a; b], NULL if error.

usage: c = appendrows(a, b); I* c = [a; b]

matlab equivalent:

>> c = [a; b] ; *I

file: matrix. c

69

matrix *assign(matrix *target, matrix *rows, matrix *cols, matrix* *source)

description: Puts the matrix source into a sub matrix of target indicated by rows and cols.

That is, rows and cols defines a sub matrix of target (exactly like

sub_matrix()) and this sub matrix is overwritten with data from the source

matrix. This is analogous to the matlab statement target(rows, cols) =

source. Needless to say, the suh matrix of target and source must be of the

same dimensions. For example, suppose

target = [1 2 :3 4; 5 6 7 8; 9 l 0 II 12],

70

source = [13 14; 15 16],

rows = [3 2] and cols = [1 2], the resulting matrix would be

[1 2 3 4; 15 16 7 8; 13 14 11 12].

If rows or cols is NULL, this means all the rows and all the columns of target.

That is, target(rows,:) = source would be coded as assign(target, rows, NULL,

source), and similarly, target(rows,:) =source would be coded as

assign(target, rows, NULL, source).

arguments: matrix *target Matrix to be written to.

matrix *rows Row indexing matrix.

matrix *cols Column indexing matrix

matrix *source Matrix whose data will be written to target.

returns: matrix * Copy of target with parts overwritten by source, NULL if error.

usage: assign(target, rows, cols, source); II target(rows, cols) =

source

assign(target, rows, NULL, source); II target(rows, :) =source

assign(target, NULL, cols, source); II target(:, cols) =source

see also: sub...matrix() temp_copy()

note: Does not handle the case target(:,:) = source. for this case copy source with

target = tern p_copy(source).

file: matrix. c

void clear _error(void)

description: Clears the error string. This is typically done at start up or after recovering

from an error.

arguments: nothing

returns: nothing

usage: clear_error(); II Clear error messages

see also: get_error () , 'error() , print_error ()

file: utils. c

void close_GM(void)

description: Frees memory allocated to temporary matrices and cleans up. close_GM()

should only be called once and be matched with a open_GM() call. To only

free memory allocated by temporary matrices use kilUempJist().

arguments: none

returns: nothing

usage: close_GM(); I I Clean up

see also: open_GM(), kilLtemp_list ()

file: utils.c

71

72

int cmplx_promote(matrix *a, matrix *b)

description: Promotes, if necessary, the operands a and b to complex matrices, that is, if

either a or b is complex then both a and b are converted to complex matrices.

arguments: matrix *a, *b Matrices to be promoted.

returns: int NO ERR if successful, -1 if malloc failed

usage: res = cmplx_promote(a, b); I* Complex promotes a and b, OK if res

== NOERR. *I

see also: op_check ()

file: matrix. c

matrix *conj(matrix *mat)

description: Returns a matrix equal to the complex conjugate of the input matrix.

arguments: matrix *mat Input matrix.

returns: matrix * The complex conjugated input matrix

usage: conj_A = conj (A); I* conj_A = -A

matlab equivalent:

>> conj_A = conj(A); *I

file: matrix. c

73

matrix *copy _matrix(matrix *source)

description: Returns a copy of the matrix source. The copy is allocated with new ..matrix().

Note that it is the user's responsibility to free this matrix. Use copy_temp() to

get a temporary matrix (which will be freed by kilLtempJist() or close_GM()).

arguments: matrix *source Matrix to be copied.

returns: matrix * Copy of source. NULL if out of memory.

usage: new = copyJUatrix(old); I I copy the matrix old to the matrix new

see also: killJUatrix(), new_temp(), copy_tempO, new.1natrixO,

kilLternp..list 0

note: It is the user's responsibility to free any matrix that has been allocated with

copy . .matrix (with kill..matrix).

file: matrix. c

matrix *copy_temp(matrix *source)

description: Returns a copy of the matrix source. The copy is allocated with new_temp()

and therefore, is a temporary matrix. To free ALL temporary matrices, use

kilLtempJist() or close_GM().

arguments: matrix *source Matrix to be copied.

returns: matrix * Copy of Hource. NULL if out of memory.

usage: new = copy_tel!lp(old); II copy the matrix old to the temporary

matrix new

see also: kilL.matrixO, copyJnatrix(), new_temp(), newJnatrixO,

kilLtemp_list ()

file: matrix. c

void error(char *msg)

74

description: Copies the stt-i'ng msg to the global error string. This routine is used to report

errors. The error string can be recovered by get_error(). Maximum length of

msg is 255 characters.

arguments: char *msg; Error message to be copied to the global error string.

returns: nothing

usage: error(Division by zero is a bad idea); I* Division by zero error

message *I

see also: get_error(), clear_errorO, print_error()

file: utils.c

FLOATTYPE fixed2float(INTTYPE i)

description: Converts a fixed-point number to noat.ing-point using the word length and

number of fractional bit." "et by init.conv().

arguments: INTTYPE i Fixed-point number to be converted to floating-point.

returns: FLDATTYPE Floating-point number representing the input argument.

usage: FLDATTYPE result;

INTTYPE int_result;

result= float2fixed(int_result); I* convert int_result to

floating-point *I

see also: init_conv(), float2fixed(), mfloat2fixed(), mfixed2float()

file: conv. c

INTTYPE f!oat2fixed(FLOATTYPE f)

description: Converts a floating-point number to fixed-point using the word length and

number of fractional bits set by iniLconv().

arguments: FLDATTYPE f Floating-point number to be converted to fixed-point.

75

returns: INTTYPE Integer whose bits are the fixed-point representation of the input

argument.

usage: INTTYPE fixed_pi;

fixed_pi = float2fixed(3.141592654); II convert pi to fixed-point

see also: init_conv(), fixed2float0, mfloat2fixed(), mfixed2float()

file: conv. c

76

void geLerror(char *error _string)

description: Copies the global error string to error _string. If an error has occurred the

error string will contain an error message. error..string must be allocated to at

least 255 characters by the caller.

arguments: char *error_string Will contain a copy of the error message (if any).

returns: nothing

usage: char err_str[255]; I I make sure that err_str is at least 255

chars long

get_error(err_str); II get error message

see also: error(), clear_error(), print_error()

file: utils.c

void GM2LV(matrix *a, TDlHdl re, TDlHdl im)

description: Copies data from GM matrix to Labview matrix. Note that re and im must

be already allocated by the caller and of correct dimensions. If a is a real

matrix then zeros will be put in im.

arguments: matrix *a GM matrix whose data is to be copied to re and im.

TD1Hdl re, im Handles to Labview matrix data structure.

returns: nothing

usage: LV2GM(A, A_real, A_imag); II Copies data from A into A_real and

A_imag.

see also: LV2GM()

file: ut ils. c

matrix *herm(matrix *mat)

description: Returns the conjugate transpose of the input matrix , that is, takes the

hermitian of mat.

arguments: matrix *mat Input matrix.

returns: matrix * The conjugate transposed input matrix, NULL if error.

usage: tran...A = herm(A); I* tran...A = A'

matlab equivalent:

>> A = A'; Y. Note ' not ' . ' that is, conjugate transpose *I

see also: transp ()

file: matrix. c

matrix *imag(matrix *mat)

description: Returns a. matrix containing the imaginary part of mat.

Mguments: matrix *mat Input matrix.

77

returns: matrix * Imaginary part of mat.

usage: im_part = imag(cmplx..matrix); I* im_part = Im[cmplx..matrix]

matlab equivalent:

>> im_part = imag(cmplx..matrix); *I

file: matrix. c

matrix *index_cols(matrix *mat, matrix *ind)

78

description: Returns the co.Jumns of mat that are pointed out by incl. The elements of ind

are truncated to integers (with mf!oor()) and are used to pick out columns.

That is, suppose mat = [1 2 3; 4 5 6; 7 8 9], and ind = [3.14 1.99], then the

result would be a matrix of the form [3 2; 6 5; 9 8]. This is analogous to the

matlab statement, mat(:, ind).

arguments: matrix *mat Matrix to be indexed.

matrix *ind Column indexing matrix.

returns: matrix * The indexed input matrix, NULL if error.

usage: B = index_cols (mat, ind); I* B = mat (: , ind)

matlab equivalent:

» B = mat (: , ind) ; *I

see also: index_rows (), index_rows_cols (), sub..matrix ()

note: For grca.t.<·st. convcni<•nce, ''"" ,;uluna.trix() for all indexing purposes.

79

file: matrix. c

matrix *index_rows(matrix *mat, matrix *ind)

description: Returns the rows of mat that are pointed out by ind. The elements of ind are

truncated to integers (with mfloor()) and are used to pick out rows. That is,

suppose mat = [1 2 3; 4 5 6; 7 8 9], and ind = [3.14 1.99], then the result

would be a matrix of the form [7 8 9; 4 5 6]. This is analogous to the mat!ab

statement, mat(ind, :).

arguments: matrix *mat Matrix to be indexed.

matrix *ind Row indexing matrix.

returns: matrix * The indexed input matrix, NULL if error.

usage: B = index_rows (mat, ind); I* B = mat (ind, :)

matlab equivalent:

>> B = mat(ind, :) *I

see also: index_cols (), index_rows_cols (), sub.Jnatrix ()

note: For greatest convenience, use sub_matrix() for all indexing purposes.

file: rna trix. c

matrix *index_rows_cols(matrix *mat, matrix *ind_a, matrix *ind_b)

80

description: Returns the rows and columns of mat that are pointed out by ind_a and ind_b.

The elements of ind_a and ind_b are truncated to integers (with mfloor()) and

are used to pick out rows and columns, respectively. That is, suppose mat =

[1 2 3; 4 56; 7 8 9], and ind_a = [3.14 1.99] and ind_b = [2.1], then the result

would be a matrix of the form [8; 2] (that is, elements (3,2) and (1,2)). This is

analogous to the matlab statement, mat(ind..a, ind_b).

arguments: matrix *mat Matrix to be indexed.

matrix *ind_a Row indexing matrix.

matrix *ind_b Column indexing matrix.

returns: matrix * The indexed input matrix, NULL if error.

usage: B = index..rows_cols (mat, ind_a, ind_b); I* B = mat (ind_a, ind_b)

matlab equivalent:

» B = mat(ind_a, ind_b); *I

see also: index..rows (), index_cols (), sub...matrix()

note: For greatest convenience, use sub_matrix() for all indexing purposes.

file: matrix. c

void iniLGM(void)

description: Initializes everything. Clears the global error string (see error()), sets output

print format to Mi\TLAB and 8 digits (s<'e iniLprint()) and initia.lizcs

memory management (see iniUempJist()). iniLGM() should only be called

once and be matched with a close_GM() call.

arguments: none

returns: nothing

usage: init_GM(); I I Initialize everything

see also: close_GM ()

file: utils.c

void init_conv(int wlen, int fbits)

81

description: Initializes the conversion routines and sets the word length and number of

fractional bits for the fixed-point representation. The fixed-point numbers are

assumed to be signed. Thus, for a word length of 8 and 3 fractional bits, one

bit would be the sign bit and 4 bits will be left for the integer part. This

means that number between 1111.111 and -1111.111 (±15.875) can be

represented. Maximal word length is 32.

arguments: int wlen

int fbits

returns: nothing

Number of bits per word

Number of fractional bits

usage: init_conv(21, 6); I* Use 21 bit signed words; 6 fractional bits,

14 integer bits *f

82

see also: float2fixed(), fixed2float (), mfloat2fixed(), mfixed2float ()

file: conv. c

void init_print(int sdig, int format)

description: Set number of significant digits and format used by printm() and inLprintm().

The format can either be PLAIN or MATLAB. MATLAB gives a text output

that is easily imported into matlab. PLAIN on the other hand is a bit easier

read.

arguments: int sdig Number of significant digits.

int format Output format style, either MATLAB or PLAIN.

returns: nothing

usage: init_print(6, MATLAB); I I 6 significant digits and MATLAB output

format

see also: printmO, int_printm(), init_GM()

file: utils. c

int init_temp_!ist(void)

description: Initialize the list for allocation of temporary matrices

arguments: none

returns: int NOE!Ul if all right, -l if out of rnernory

•

usage: err= init_temp_listO; I* Initialize temp matrices, inspect err

for errors. *I

see also: ini t_GM 0

note: iniUempJist() is normally called from iniLGM();

file: matrix. c

int_matrix *inLadd(intJTiatrix *a, int_matrix *b)

description: Adds matrices a and b.

arguments: int..matrix *a, *b Input matrices.

returns: int..matrix * The sum of a and b, NULL if error.

usage: sum = int_add(a, b); I* sum = a + b

matlab equivalent:

>> sum = a + b; *I

file: int..matrix. c

int_matrix *inLappendcols(intJTiatrix *a, inLmatrix *b)

83

description: Returns a matrix with b's columns appended to a ([a, b]). Naturally, a and b

must have the same number of rows.

arguments: int..matrix *a, *b Input matrices.

returns: int_rnatrix * [a, b], NULL if error.

usage: c = int_appendcols(a, b); I* c = [a, b]

matlab equivalent:

>> c = [a, b] ; *I

file: int_rnatrix. c

int..matrix *inLappendrows(int_matrix *a, inLmatrix *b)

description: Returns a matyix with b's rows appended to a ([a; b]). Naturally, a and b

must have the same number of columns.

arguments: int_rnatrix *a, *b Input matrices.

returns: int_rnatrix * [a; b], NULL if error.

usage: c = int_appendrows (a, b); I* c = [a; b]

matlab equivalent:

>> c = [a; b]; *I

file: int_rnatrix. c

84

inLmatrix *inLassign(inLmatrix *target, inLmatrix *rows, inLmatrix *cols, matrix *source)

description: Puts the matrix source into a sub matrix of target indicated by rows and cols.

That is, rows and cols defines a sub matrix of target (exactly like

int..sub_matrix()) and this sub ma.t.rix is overwritten with data from the source

matrix. This is analogous to the mat lab statement target(rows, cols) =

source. Needless to say, the sub matrix of target and source must be of the

same dimensions. For example, suppose

target = [1 2 3 4; 5 6 7 8; 9 10 11 12],

source = [13 14; 15 16],

rows = [3 2] and cols = [1 2], the resulting matrix would be

[1 2 3 4; 15 16 7 8; 13 14 11 12].

85

If rows or cols -is NULL, this means all the rows and all the columns of target.

That is, target(rows,:) = source would be coded as assign(target, rows, NULL,

source), and similarly, target(rows,:) =source would be coded as

int..assign(target, rows, NULL, source).

arguments: int_matrix *target Matrix to be written to.

int_matrix *rows Row indexing matrix.

int_matrix *cols Column indexing matrix

int_matrix *source Matrix whose data will be written to target.

returns: int_matrix * Copy of target with parts overwritten by source, NULL if

error.

usage: int_assign(target, rows, cols, source); II target(rows, cols) =

source

int_assign(target, rows, NULL, source); II target(rows, :) =

source

int_assign(target, NULL, eels, source); II target(:, eels) =

source

see also: int_sub...matrix(), int_temp_copy()

86

note: Does not handle the case target(:,:) =source. For this case copy source with

target = inLtemp_copy(source).

file: int...matrix. c

int inL~mplx_promote(intJTiatrix *a, inLmatrix *b)

description: Promotes, if necessary, the operands a and b to complex matrices, that is, if

either a or b is complex then both a and b are converted to complex matrices.

arguments: int...matrix *a, *b Matrices to be promoted.

returns: int N 0 ERR if successful, -1 if malloc failed

usage: res = int_cmplx_promote(a, b); I* Complex promotes a and b, OK if

res == NOERR. *I

see also: int_op_check ()

file: int...matrix. c

inLmatrix *inLconj (int_matrix *mat)

description: Returns a matrix equal to the complex conjugate of the input matrix.

arguments: int...matrix *mat Input. matrix.

87

returns: intJilatrix * The complex conjugated input matrix

usage: conj...A = int_conj (A); I* conj...A = -A

matlab equivalent:

>> conj...A = conj(A); *I

file: intJilatrix. c

int_matrix *int_copy Jnatrix(intJnatrix *source)

description: Returns a copy of the matrix source. The copy is allocated with

int..new_matrix(). Note that it is the user's responsibility to free this matrix.

Use inLcopy_temp() to get a temporary matrix (which will be freed by

kilLtempJist() or close_GM()).

arguments: intJilatrix *source Matrix to be copied.

returns: intJilatrix * Copy of source. NULL if out of memory.

usage: new = int_copyJilatrix(old); II copy the matrix old to the matrix

new

see also: intJdllJilatrix(), int..new_temp(), int_copy_temp(),

int..newJilatrix (),

kilLtemp_list ()

note: It is the user's responsibility to free any matrix that has been allocated with

inLcopy_matrix (with int._kilLrnatrix).

88

file: intJllatrix. c

int_matrix *inLcopy _temp(intJTiatrix *source)

description: Returns a copy of the matrix source. The copy is allocated with

int_new_temp() and therefore, is a temporary matrix. To free ALL temporary

matrices, use kilLtempJist() or close_GM().

arguments: intJllatrix *source Matrix to be copied.

returns: intJllatrix * Copy of source. NULL if out of memory.

usage: new = int_copy_temp(old); I I copy the matrix old to the temporary

matrix new

see also: int...kilLmatrixO, int_copy..rnatrix(), int..new_temp(),

int..new..rnatrix(),

kilLtemp_list ()

file: intJllatrix. c

inLmatrix *inLherm(intJTiatrix *mat)

description: Returns the conjugate transpose of the input matrix, that is, takes the

hermitian of mat.

arguments: intJllatrix *mat Input matrix.

returns: int..rnatrix * The conjugate transposed input matrix, NULL if error.

89

usage: tran...A = int...herm(A); I* tran...A = A'

matlab equivalent:

>> A = A'; % Note ' not ' . ' that is, conjugate transpose *I

see also: int_transp ()

file: intJnatrix. c

int_matrix *int_imag(int_matrix *mat)

description: Returns a matrix containing the imaginary part of mat.

arguments: intJnatrix *mat Input matrix.

returns: intJnatrix * Imaginary part of mat.

usage: im_part = int_imag(cmplxJnatrix); I* im_part = Im[cmplxJnatrix]

matlab equivalent:

» im_part = imag(cmplxJnatrix); *I

file: intJnatrix. c

inLmatrix *inLindex_cols(inLmatrix *mat, int_matrix *ind)

description: Returns the columns of mat that are pointed out by ind. The elements of ind

are used to pick out columns. That is, suppose mat = [1 2 3; 4 5 6; 7 8 9], and

ind = [:! l], then the n•stdt would be a matrix of the form [:! 2; 6 5; 9 8]. This

is analogous to the mat.la.b st.a.t.enH~nt., mat(:, ind).

arguments: int_matrix *mat Matrix to be indexed.

int_matrix *ind Column indexing matrix.

returns: int_matrix * The indexed input matrix, NULL if error.

usage: B = int_index_cols (mat, ind); I* B = mat (: , ind)

matlab equivalent:

>> B =mat(:, ind); *I

see also: int_index..rows (), int_index..rows_cols (), int_sub_matrix ()

note: For greatest convenience, use int..sub_matrix() for all indexing purposes.

file: int_matrix. c

int_matrix *int_index_rows(int_matrix *mat, int_matrix *ind)

90

description: Returns the rows of mat that are pointed out by incl. The elements of ind are

used to pick out rows. That is, suppose mat = [1 2 3; 4 5 6; 7 8 9], and ind =

[3 1], then the result would be a matrix of the form [7 8 9; 4 5 6]. This is

analogous to the matlab statement, mat(ind, :).

arguments: int_matrix *mat Matrix to be indexed.

int_matrix *ind Row indexing matrix.

returns: int_matrix * Tlw indexed input. matrix, NULL if error.

usage: B = int index rows(mat, ind); I* B = mat(ind, :)

matlab equivalent:

>> B = mat(ind, :) *I

see also: int index cols(), int index.rows cols(), int sub...matrix()

note: For greatest convenience, use int..sub matrix() for all indexing purposes.

file: int...matrix. c

91

int_index_rows cols(int matrix *mat, int....matrix *ind a, int matrix* ind b)

description: Returns the rows and columns of mat that are pointed out by ind a and ind b.

The elements of ind a and ind b are used to pick out rows and columns,

respectively. That is, suppose mat = [1 2 3; 4 5 6; 7 8 9], and ind a = [3 1]

and ind b = [2], then the result would be a matrix of the form [8; 2] (that is,

elements (3,2) and (1,2)). This is analogous to the matlab statement,

mat(ind a, ind b).

arguments: int...matrix *mat Matrix to be indexed.

int...matrh *ind a Row indexing matrix.

int...matrix *ind b Column indexing matrix.

returns: int...matrix * The indexed input matrix, NULL if error.

usage: B = int index rows cols(mat, ind a, ind b); I* B = mat(ind a,

ind b)

92

matlab equivalent:

» B = mat (ind_a, ind_b); *I

see also: int_index_rowsO, int_index_cols(), int_sub...rnatrixO

note: For greatest convenience, use int..sub_matrix() for all indexing purposes.

file: int...rnatrix. c

void inLkillJ11atrix(intJ11atrix *mat)

description: Frees memory used by mat. Note that mat should have been allocated with

inLnew_matrix() or inLcopyJnatrix(). If mat is a temporary matrix, that is,

allocated explicitly or implicitly with inLnew_temp() or inLcopy_temp(), then

kilLtempJist() should be used.

arguments: int...rnatrix *mat Matrix to be freed, must have been allocated by

intJlew _matrix() or int_copy Jnatrix()

returns: nothing

usage: intJkill...rnatrix(A); //Free memory allocated for A

see also: int_copy_matrix(), intJlew_temp(), int_copy_temp(),

intJlew...rnatrix(),

kilLtemp_list 0

note: The matrix mat. must have been allocated by inLncw_matrix() or

in Lcopy _matrix()

file: int..matrix. c

int int_maxJndex(int.matrix *mat)

description: Return index to maximal element of mat.

arguments: int..matrix *mat Input matrix.

returns: int Index to the maximal element of mat.

usage: max_i = int..max_index(mat); I* max(mat) = mat [max_i]

matlab equivalent:

>> max_i = find(mat -- max(mat(:))); *I

file: int..matrix. c

int int_minJndex(int.matrix *mat)

description: Return index to minimal element of mat.

arguments: int..matrix *mat Input matrix.

returns: int Index to the minimal element of mat.

usage: min_i = int..min_index(mat); I* min(mat) = mat [min_i]

matlab equivalent:

>> min_i = find(mat -- min(mat(:))); *I

file: int..matrix. c

93

\

int_matrix *inLminus(inLmatrix *mat)

description: Returns a matrix equal to the negative of input matrix.

arguments: int..matrix *mat Input matrix.

returns: int..matrix * The negated input matrix.

usage: minus ...A = int..minus (A) ; I* minus ...A = -A

matlab equivalent:

>> minus...A = -A; *I

file: int..matrix. c

inLmatrix *inLmul(int_matrix *a, int_matrix *b)

description: Multiplication of matrices a and b.

arguments: int..matrix *a, *b Input matrices.

returns: int..matrix * The product of a and b, NULL if error.

usage: prod = int_pmul(a, b); I* pprod = a * b

matlab equivalent:

>> prod = a * b; *I

file: int..matrix. c

94

95

int int_muLcheck(inLmatrix *a, int_matrix *b)

description: Check field type and dimensions. First a and b are complex promoted by

inLcmplx_promote(). Returns COMP if a and b have the same dimensions.

Returns COMP - SCAL if either a or b is a scalar. In addition, if a and b

are complex, CMPLX is OR ed to the returned value, otherwise REAL is OR

ed to the returned value. Thus, if type= int_op_check(a,b), then (type &

CMPLX) will be true if either a orb is complex, (type & REAL) will be true

if both a and bare real, (type & COMP) will be true if dimensions match or if

a orb is a scalar, (type & SCAL) will be true if a or b is a scalar.

arguments: int..matrix *a, *b matrices to be checked

returns: int The hits are set according to the description above.

usage: type = int...muLcheck(a, b); I* checks dimensions of a, b. Bits

in type will be set in type according to the description above *I

see also: int_cmplx_promote(), int_op_check()

note: intJnuLcheck() is used by intJnul(). A scalar is compatible with any matrix.

file: int..matrix. c

int_matrix *inLnew_matrix(int rows, int cols, int type)

description: Allocates memory for a matrix with dimension rows and cols and of type type

(CMPLX or nEAL). Note that it is the user's responsibility to free this

matrix. Use int.Jlew_l.emp() to allocate memory for a temporary matrix

(which will be freed by kilLt.empJist() or close_GM()).

96

arguments: int rows, eels Dimensions of matrix to be allocated

int type

real matrix

Type of matrix, CMPLX for a complex matrix and REAL for a

returns: int_matrix * Matrix of the requested size and type. NULL if out of

memory.

usage: mat = int..new_matrix (3, 5, CMPLX); I* Allocate memory for a 3x5

complex matrix *I

see also: int_copy.lllatrix(), int..new_tempO, int_copy_temp(),

int....kill.lllatrix(),

kilLtemp_list ()

note: It is the user's responsibility to free any matrix that has been allocated with

int..new _matrix() (with int..kill..matrix()).

file: int...matrix. c

int...rnatrix *int_new_temp(int rows, int cols, int type)

description: Allocates memory for a temporary matrix with dimension rows and cols and

of type. Note that it is the user's responsibility to free this matrix. To free

ALL temporary matrices, use kilLtempJist() or close_GM().

arguments: int rows, eels Dimensions of matrix to be allocated.

int type

real matrix.

Type of matrix, CMPLX for a complex matrix and REAL for a

returns: int.Jllatrix *

memory.

Matrix of the requested size and type. NULL if out of

usage: mat = int_new_temp(3, 5, CMPLX); II Allocate memory for a

temporary 3x5 complex matrix

see also: int..kill...matrix() , int_copy ...matrix(), int_copy_temp (),

int..new...matrix(),

kilLtemp_list ()

file: int.Jllatrix. c

int inLop_check(int_matrix *a, inLmatrix *b)

97

description: Check field type and dimensions. First a and b are complex promoted by

int_cmplx_promote(). Returns COMP if a and b have the same dimensions.

Returns COMP - SCAL if either a or b is a scalar. In addition, if a and b

are complex, CMPLX is OR ed to the returned value, otherwise REAL is OR

ed to the returned value. Thus, if type= int..op_check(a,b), then (type &

CMPLX) will be true if either a orb is complex, (type & REAL) will be true

if both a and bare real, (type & COMP) will be true if dimensions match,

(type & SCAL) will be true if either a orb is a scalar.

arguments: int.Jllatrix *a, *b Matrices to be checked

returns: int The bits are set according to the description above.

usage: type = int_op_check(a, b); I* checks dimensions of a, b. Bits in

type will be set in type according to the description above *I

see also: int_crnplx_prornoteO, intJlluLcheck()

note: int_op_check() is used by int_add(), int_pmul(), int_pdiv(). A scalar is

compatible with any matrix.

file: intJllatrix. c

intJUatrix *int_pmul(intJUatrix *a, int_matrix *b)

description: Point wise multiplication of matrices a and b.

arguments: intJllatrix *a, *b Input matrices.

returns: intJllatrix * The point wise product of a and b, NULL if error.

usage: pprod = int_prnul(a, b); I* pprod = a . * b

rnatlab equivalent:

>> pprod = a ·* b; *I

file: intJllatrix. c

void int_printm(intJUatrix *mat)

description: Prints an integer matrix to stdout using the number of significant digits and

output style set by iniLprint().

arguments: intJllatrix *mat Matrix to be printed

returns: void

98

99

usage: printrn(Rxx); II prints Rxx to stdout

see also: init_print() printrn()

file: utils. c

int_matrix *int_range(INTTYPE from, INTTYPE step, INTTYPE to)

description: Creates a vector like matlab's from:step:to. If step is 0, then the step size is

set to 1. For example, int_range(l, 2, 7) results in [1 3 5 7], int_range(3, 0, 5)

results in [3 4 ;>].

arguments: INTTYPE from Start value.

INTTYPE step Step size.

INTTYPE to Stop value.

returns: int..rnatrix * Vector with elements starting at from and stopping at to,

spaced by step. NULL if error.

usage: int_range(from, step, to); II from:step:to

int_range(from, 0, to); II frorn:to

file: int..rnatrix. c

inLmatrix *inLreal(int_matrix *mat)

description: Returns a matrix containing the real part o[mat.

arguments: int..rnatrix *mat Input matrix.

returns: int...matrix * Real part of mat.

usage: reaLpart = int_real (cmplx...matrix); I• reaLpart =

Re [cmplx...matrix]

matlab equivalent:

» reaLpart = real.(cmplx...matrix); •I

file: int...matrix. c

int_matrix *i}lt_scl2mat(INTTYPE re, INTTYPE im, int type);

100

description: Creates a lxl matrix from the scalar (re + j*im), if type is CMPLX. If type is

REAL the imaginary part is ignored.

arguments: INTTYPE re Real part.

INTTYPE im Imaginary part

returns: int...matrix * lxl matrix with the element (re + j*im). NULL if error.

usage: scalar...mat = int_scal2mat(3, 2, CMPLX); II scalar...mat(1,1) = 3 +

j*2

scalar...mat = int_scal2mat(3, 2, REAL); II scalar...mat(1,1) = 3

inLsub_matrix(int_matrix *mat, inLmatrix *rows, inLmatrix* inLmatrix *cols);

description: Returns the rows a.ncl columns of ma.t that are pointed out by (the matrices)

rows and cols. The clements of rows and cols arc used to pick out rows and

columns, respectively. That is, suppose mal= [I 2 :1; 4 5 6; 7 8 9], and rows =

101

[3 1] and cols = [2], then the result would be a matrix of the form [8; 2] (that

is, elements (3,2) and (1,2)). This is analogous to the matlab statement,

mat(rows, cols). To just index rows, like matlab's mat(rows, :), set cols to

NULL. Similarly, to just index columns, like matlab's mat(:, cols), set rows to

NULL. By using this scheme all indexing can be done with int..sub_matrix().

arguments: int...matrix *mat Matrix to be indexed.

int...matrix *rows Row indexing matrix.

int...matrix *cols Column indexing matrix.

returns: int...matrix * The indexed input matrix, NULL if error.

usage: B = int_sub_rnatrix(mat, rows, cols); II B = mat(rows, cols)

B = int_sub_rnatrix(mat, rows 1 NULL); II B = mat(rows, :)

B = int_sub_rnatrix(mat, NULL, cols); I* B = mat (: , cols)

matlab equivalent:

>> B = mat(rows, cols); *I

see also: int_index..rows () , int_index_cols () , int_index..rows_col s ()

note: For greatest convenience, use int..sub_matrix() for all indexing purposes.

file: int...matrix. c

int_matrix *int_transp(inLmatrix *mat)

102

description: Returns the transpose of the input matrix. Note: does not conjugate

elements. Use intJ1erm() for conjugate transpose (hermitian).

arguments: int_rnatrix *mat Input matrix.

returns: int_rnatrix * The transposed input matrix, NULL if error.

usage: tran_A = int_transp(A); I* tran_A = A.'

matlab equivalent:

>>A= A.'; Y. Note 'not ' that is, does not conjugate *I

see also: int...herm ()

file: int_rnatrix. c

void ki!Lmatrix(matrix *mat)

description: Frees memory used by mat. Note that mat should have been allocated with

new_matrix() or copyJnatrix(). If mat is a temporary matrix, that is,

allocated explicitly or implicitly with new_temp() or copy_temp(), then

kilLtempJist() should be used.

arguments: matrix *mat Matrix to be freed, must have been allocated by

new_matrix() or copy . .matrix()

returns: nothing

usage: kill_rnatrix(A); //Free memory allocated for A

103

see also: copy _matrix(), new_temp(), copy_temp(), new_matrix(),

kilLtemp_list ()

note: The matrix mat must have been allocated by new ..matrix() or copy ..matrix()

file: matrix. c

void ki!LtempJist(void)

description: Frees memory allocated by ALL temporary matrices. The temporary matrices

are allocated, explicitly or implicitly, with new_temp() or copy_temp.

arguments: none

returns: nothing

usage: kilLtemp_list (); I I Free memory allocated by all temporary

matrices

see also: kill_matrix(), copy _matrix(), new_temp(), new_matrixO,

copy_temp(), close_GM()

file: matrix. c

matrix *LV2GM(TD1Hdl re, TDIHdl im)

description: Copies Lab view matrices to Gauss Machine (GM) matrices. No explicit

memory allocation is necessary. The memory management is handled

internally.

104

arguments: TD1Hdl re, im Handles to Labview matrix data structures.

returns: matrix *

and im.

Gauss machine matrix with data from the input arguments re

usage: A = LV2GM(A..real, A_imag); I* Create a GM matrix with real part

data from A_real and imaginary data from A_imag. *I

see also: GM2L V ()

file: utils.c

int maxJndex(matrix *mat)

description: Return index to maximal element of mat.

arguments: matrix *mat Input matrix.

returns: int Index to the maximal element· of mat.

usage: max_i = max_index(mat); I* max(mat) = mat [max_i]

matlab equivalent:

» max_i = find(mat -- max(mat(:))); *I

file: matrix. c

matrix *mfixed2ftoat(int_matrix *mat)

description: Converts a fixed-point nmtrix to floating-point using the word length and

number of [ractiona.l bits s<et by iniLconv().

105

arguments: int.Jllatrix *mat Fixed-point matrix to be converted to floating-point.

returns: matrix * Floating-point matrix corresponding to the fixed-point matrix.

usage: int.Jllatrix *int...Rxx;

matrix *Rxx;

Rxx = mfixed2float(int...Rxx); //convert int...Rxx to floating-point

see also: init_conv(), fixed2float0, mfloat2fixed(), fixed2float0

file: conv. c

inLmatrix *mfloat2fixed(matrix *mat)

description: Converts a floating-point matrix to fixed-point using the word length and

number of fractional bits set by iniLconv().

arguments: matrix *mat Floating-point matrix to be converted to fixed-point.

returns: int.Jllatrix * Integer matrix containing the fixed-point representation of

the input floating-point matrix.

usage: int.Jllatrix *int...Rxx;

matrix *Rxx;

Rxx = rnfixed2float(int...Rxx); //convert int...Rxx to floating-point

see also: init_conv(), fixed2float0, mfloat2fixed(), fixed2float0

file: conv. c

106

matrix *mfioor(matrix *mat)

description: Returns a matrix with truncated elements of mat, that is, performs the floor

function (rounding to closest smallest integer) on mat.

arguments: matrix *mat Input matrix.

returns: matrix * The "floored" input matrix, NULL if error.

usage: int..A = mfloor(A); I* int..A = floor(A)

matlab equivalent:

>> int..A = floor(A); *I

note: The output is still a floating point matrix, even though the elements are

truncated to integers.

file: matrix. c

int minJndex(matrix *mat)

description: Return index to minimal element of mat.

arguments: matrix *mat Input matrix.

returns: int Index to the minimal element of mat.

usage: min_i = min_index(mat); I* min(mat) = mat [min_i]

matlab equivalent:

>> min_i = find(mat -- min(mat(:))); *I

file: matrix. c

matrix *minus(matrix *mat)

description: Returns a matrix equal to the negative of input matrix.

arguments: matrix *mat Input matrix.

returns: matrix * The negated input matrix.

usage: minus..A = minus (A) ; I* minus ..A = -A

matlab equivalent:

>> minus..A = -A; *I

file: matrix. c

matrix *mul(matrix *a, matrix *b)

description: Multiplication of matrices a and b.

arguments: matrix *a, *b Input matrices.

returns: matrix * The product of a and b, NULL if error.

usage: prod = pmul (a, b); I* pprod = a * b

matlab equivalent:

>> prod = a * b; *I

file: matrix. c

107

108

int muLcheck(matrix *a, matrix *b)

description: Check field type and dimensions. First a and b are complex promoted by

cmplx_promote(). Returns COMP if a and b have the same dimensions.

Returns COMP - SCAL if either a or b is a scalar. In addition, if a and b

are complex, CMPLX is OR ed to the returned value, otherwise REAL is OR

ed to the returned val~e. Thus, if type= op_check(a,b), then (type &

CMPLX) will be true if either a orb is complex, (type & REAL) will be true

if both a and bare real, (type & COMP) will be true if dimensions match or if

a orb is a scalar, (type & SCAL) will be true if a or b is a scalar.

arguments: matrix *a, *b matrices to be checked

returns: int The bits are set according to the description above.

usage: type = muLcheck(a, b); I* checks dimensions of a, b. Bits in

type will be set in type according to the description above *I

see also: cmplx_promote(), op_check()

note: muLcheck() is used by mul(). A scalar is compatible with any matrix.

file: matrix. c

matrix *new_matrix(int rows, int cols, int type)

description: Allocates memory for a. matrix with dimension rows and cols and of type

(CMPLX or REAL). Note that it is the user's responsibility to free this

matrix. Usc new_t<-mp() to allocate memory for a temporary matrix (which

will be fr<'<'d by kiiU<'IllpJist() or dosP_C:M()).

109

arguments: int rows, eels Dimensions of matrix to be allocated

int type

real matrix

Type of matrix, CMPLX for a complex matrix and REAL for a

returns: matrix * Matrix of the requested size and type. NULL if out of memory.

usage: mat = new..lllatrix(3, 5, CMPLX); I* Allocate memory for a 3x5

complex matrix *I

see also: copy..lllatrix(), new_temp(), copy_temp(), kill..lllatrix(),

kilLtemp_list ()

note: It is the user's responsibility to free any matrix that has been allocated with

new_matrix() (with kii!Jnatrix()).

file: matrix. c

matrix *new_temp(int rows, int cols, int type)

description: Allocates memory for a temporary matrix with dimension rows and cols and

of type. Note that it is the user's responsibility to free thjs matrix. To free

ALL temporary matrices, use kiiLtempJist() or close_GM().

arguments: int rows, eels Dimensions of matrix to be allocated.

int type

real ma.trix.

returns: matrix *

Type of ma.trix, CMPLX for a complex ma.trix and REAL for a

Ma.t.rix of t.he requested si~e and t.yp<'. NULL if out of memory.

110

usage: mat = new_temp (3, 5, CMPLX); II Allocate memory for a temporary

3x5 complex matrix

see also: kilLmatrixO, copy ..matrix(), copy_temp(), new..matrix(),

kilLtemp~ist 0

file: matrix. c

int op_check(matrix *a, matrix *b)

description: Check field type and dimensions. First a and b are complex promoted by

cmplx_promote(). Returns COMP if a and b have the same dimensions.

Returns COMP- SCAL if either a orb is a scalar. In addition, if a and b

are complex, CMPLX is OR ed to the returned value, otherwise REAL is OR

ed to the returned value. Thus, if type= op_check(a,b), then (type &

CMPLX) will be true if either a orb is complex, (type & REAL) will be true

if both a and bare real, (type & COMP) will be true if dimensions match,

(type & SCAL) will be true if either a orb is a scalar.

arguments: matrix *a, *b Matrices to be checked

returns: int The bits are set according to the description above.

usage: type = op_check(a, b); I* checks dimensions of a, b. Bits in

type will be set in type according to the description above *I

see also: cmplx_promote(), muLcheck()

111

note: op_check() is used by add(), pmul(), pdiv(). A scalar is compatible with any

matrix.

file: matrix. c

matrix *pdiv(matrix *a, matrix *b)

description: Point wise division of !Tiatrices a and b.

arguments: matrix *a, *b Input matrices.

returns: matrix * The point wise division of a and b, NULL if error.

usage: pprod = pdi v (a, b) ; I* pprod = a . I b

matlab equivalent:

>> pprod = a .1 b; *I

file: matrix. c

matrix *pmul(matrix *a, matrix *b)

description: Point wise multiplication of matrices a and b.

arguments: matrix *a, *b Input matrices.

returns: matrix * The point wise product of a and b, NULL if error.

usage: pprod = pmul(a, b); I* pprod = a . * b

matlab equivalent:

>> pprod = a ·* b; *I

file: matrix. c

void prinLerror(void)

description: Prints the global error string to stderr.

arguments: none

returns: nothing

usage: print_error(); II Print error string to stderr.

see also: get_error(), clear_error(), error()

file: utils. c

void printm (matrix *mat)

description: Prints a matrix to stdout using the number of significant digits and output

style set by iniLprint().

arguments: matrix *mat Matrix to be printed

returns: void

usage: printm(Rxx); I I prints Rxx to stdout

see also: init_print() int_printm()

file: utils.c

112

113

matrix *range(FLOATTYPE from, FLOATTYPE step, FLOATTYPE to)

description: Creates a vector like matlab's from:step:to. If step is 0, then the step size is

set to 1. For example, range(l, 2, 7) results in [1 3 5 7], range(3, 0, 5) results

in [3 4 5].

arguments: FLOATTYPE from Start value.

FLOATTYPE step Step size.

FLOATTYPE to Stop value.

returns: matrix * Vector with elements starting at from and stopping at to,

spaced by step. NULL if error.

usage: range(from, step, to);// from:step:to

range(from, 0, to); // from:to

file: matrix. c

matrix *real(matrix *mat)

description: Returns a matrix containing the real part of mat.

arguments: matrix *mat Input matrix.

returns: matrix * Real part of mat.

usage: reaLpart = real (cmplx..rnatrix); I* reaLpart = Re [cmplx..rnatrix]

matlab equivalent:

>> reaLpart = real(cmplx..rnatrix); *I

114

file: matrix. c

matrix *scl2mat(double re, double im, int type);

description: Creates a lxl matrix from the scalar (re + j*im), if type is CMPLX. If type is

REAL the imaginary part is ignored.

arguments: FLOATTYPE re Real part.

FLOA TTYPE im Imaginary part

returns: matrix * .lxl matrix with the element (re + j*im). NULL if error.

usage: scalar..mat = scal2mat(3.14, 2.5, CMPLX); // scalarJllat(1,1) =

3.14 + j*2.5

scalar..mat = scal2mat(3.14, 2.5, REAL); // scalarJllat(1,1) = 3.14

void set_fname(char *fname)

description: This function is used by the integer matrix algebra routines. When entered

these routines calls seLfname() with their own function names as arguments.

set_fname() will store the current routine's name and if an overflow /underflow

is detected by check(), the function name will be put in front of the error

message produced by check(). That is, suppose int.mul() is called, then

int..mul() makes the call: set_fname(int_mul:). If a overflow occurs inside

inLmul(), check() will set the global error message to "inLmul:

overflow /underflow". See check() and error() for more details.

arguments: char *fname

error()

String containing pt·cfix to C!TOI' messages produced by

115

returns: nothing

usage: set_fname(Function name); I* error messages will look like:

Function name: ... *I

see also: error(), get_error(), print_error()

file: conv. c

INTTYPE check(INTTYPE result)

description: Checks to if the result of an operation produces an overflow /underflow. When

doing fixed-point arithmetic check() will inspect the current word length to

make sure that result is inside the dynamic range. If an overflow or underflow

occurs, check() will call error() to set the global error string. Pre pended to

the error message is the string set by set_fname(). That is, suppose after the

call seUname(int_pmul) an overflow is detected by check(). Then the global

error string is set to "in_pmul: overflow /underflow", thereby identifying the

routine which produced the overflow /underflow. The result is returned modulo

the largest number that can be represented by the current word length. That

is, if no overflow or underflow occurs the result is returned unchanged.

arguments: INTTYPE result Result of a fixed-point operation that is to be checked

for overflow /underflow.

returns: INTTYPE The reLumcd value is result mod maxiut, where maxiut, is the

lat·gcst numbet· represcutabl<! with the current word length.

116

usage: INTTYPE a, b, c; c = check(a+b); II e = (a+b) mod maxint, checks

for overflow

see also: set_fname(), error(), get_errorO, print_errorO, init_conv()

file: conv. e

matrix *sub_matrix(matrix *mat, matrix *rows, matrix *eels);

description: Returns the rows and columns of mat that are pointed out by (the matrices)

rows and cols.-The elements of rows and eels are truncated to integers (with

mfloor()) and are used to pick out rows and columns, respectively. That is,

suppose mat = [1 2 3; 4 5 6; 7 8 9], and rows= [3.14 1.99] and eels = [2.1],

then the result would be a matrix of the form [8; 2] (that is, elements (3,2)

and (1,2)). This is analogous to the matlab statement, mat(rows, eels). To

just index rows, like matlab's mat(rows, :), set eels to NULL. Similarly, to just

index columns, like matlab's mat(:, eels), set rows to NULL. By using this

scheme all indexing can be done with sub_matrix().

arguments: matrix *mat Matrix to be indexed.

matrix *rows Row indexing matrix.

matrix *eels Column indexing matrix.

returns: matrix * The indexed input matrix, NULL if error.

usage: B = sub_matrix (mat, rows, eels); I I B = mat (rows, eels)

B = sub_matrix(mat, rows, NULL); II B = mat(rows, :)

B = sub..lllatrix(mat, NULL, eels); I* B = mat (: , eels)

matlab equivalent:

>> B = mat(rows, eels); *I

see also: index_rows (), index_cols (), index_rows_cols ()

note: For greatest convenience, use sub_matrix() for all indexing purposes.

file: matrix. c

matrix *transp(matrix *mat)

description: Returns the transpose of the input matrix. Note: does not conjugate

elements. Use herm() for conjugate transpose (hermitian).

arguments: matrix *mat Input matrix.

returns: matrix * The transposed input matrix, NULL if error.

usage: tran_A = transp (A) ; I* tran_A = A. '

matlab equivalent:

>>A= A.'; Y. Note 'not ' that is, does not conjugate *I

see also: hermO

file: matrix. c

117

118

I Pin Number I Signal Name I Description

208-210 BA0-2 Board address.

211-213 PA0-2 Port address.

299 XIW* X-bus input FIFO write signal.

300 YIW* Y-bus FIFO write signal.

301 XOR* X-bus output FIFO read signal.

302 AROE* Accumulator to X-bus transport enable.

303 XBOE* X-bus transport output enable.

304 VECTORMODE Vector mode signal.

305 ROE* Adder RAM output enable.

306 MROE* Multiplier RAM output enable.

307 XIFLRT* X-bus input FIFO restart.

308 XIR* X-bus input FIFO read signal.

309 YIFLRT* Y-bus FIFO restart.

310 YIR* Y-bus FIFO read signal.

311 XOFLRT* X-bus output FIFO restart.

312 XOW* X-bus output FIFO write signal.

313 AREN* Accumulator to X-bus latch enable.

314 ARWE* Adder RAM write strobe.

315 SREN* Accumulator latch enable.

316 RESBWE* Residue bus write enable.

317 RESBRE* Residue bus read enable.

318 CLR* Processor wide clear signal.

319 PREN* Product latch enable.

320 YBEN* Y-bus transport latch enable.

321 XFEN* X-bus to multiplier RAM latch enable.

322 XBEN* X-bus transport latch enable.

323 MRWE* Multiplier RAM write enable.

324 i\lUTHMODE Arithmetic mode signal.

T;tble 6.1: Gauss M~tchine Processor Control Signals

Chapter 7

ALGORITHMS

As previously stated; the Gauss machine is designed primarily to perform

level 3 operations[ll]. It also has a vector mode of operation which handles level

2 and level 1 operations efficiently. Some algorithms for the Gauss machine are

described below. Although the Gauss machine operates on GEQRNS operands, the

algorithms are discussed using the familiar notation of complex numbers.

7.1 Matrix Product Based Algorithms

This section describes the implementation of the matrix multiplication operation on

the Gauss machine and implementation of algorithms which are based upon matrix

multiplication.

7.1.1 Matrix Multiplication

If A E cmxn and B E cnxr then AB = D where D E cmxr, and each

d;j = Lk=t a;kbki· The core of the matrix multiplication is the multiply-accumulate

operation.

Suppose we wish to multiply two 2 x 2 matrices. The data are presented in a

sloped data front on the X and Y sides of the array and the results are accumulated

in place. This configmat.ion is depicted in Figure 7.1. Note that the processors arc

configured as simple multiply-accun!ulate units. Each clock cycle, the sloped A and

B d<tt.a fronts ;u·e advanced one processing clement l.o t.h<> right. and up, respectively,

120

and the input operands are multiplied and accumulated.

The configuration shown in Figure 7.1 assumes that the array elements are pre-

initialized to zero. The leading zeros keep the array initialized to zero and the trailing

zeros maintain the results while the computation is completed. This multiplication

uses 2 x 2 input matrices, however, it can be extended to input matrices where A is

2 x n and B is n x 2. Matrix multiplication of larger arrays may be achieved by using

block multiplication. Systolic arrays which use in-place accumulation of results are

well sui ted to block operations.

a,, a,, 0 (2, 1)

(1 '1)

b,
b,
0

(2,2)

~

(1 ,2)

0
b.,
b,

Figure 7.1: Example of Matrix Multiplication

The computation of AB where A and B are of arbitrary dimensions can

be performed by decomposing A into blocks of two rows and n columns, and by

decomposing B into blocks of n rows and t.wo columns. This decomposition is depicted

121

below:

AI
A2

A= A3

A;

where each Ak E C2xn and each B1 E cnx 2 • If a matrix does not have dimensions

which meet the multiple of three rows or columns requirements, then the matrix may

be padded with zeros. Each of these matrix block products requires n + 4 cycles to

complete the computation and two cycles to remove the results from the array. The

result of the matrix block computation is a 2 x 2 matrix. Thus for A E ckxn and

B E cnxr, the number of cycles required to complete the product AB is given by

O(AB) = fk/21 fr/2l(n + 6), (7.1)

where f •l represents the greatest integer or ceiling function. Clearly from Equa-

tion 7.1, if n is small then the overhead associated with the time required to shift

data out and the zero padding becomes significant. As n --> 1, the operation de­

generates into an outer product. The dynamic range requirements for the matrix

multiplication are determined by the size of A and B, and the dynamic range of the

data in the matrices. To be exact, suppose that A has a dynamic range of p, B has

a dynamic range of q, and the dimension quantity n is as given above. Then the

dynamic range requirements for the product AB is given by

OJJ(AB) = (1' + q) + n- I. (7.2)

122

7 .1. 2 0 is crete Fourier Transform

The OFT may be easily expressed as a level 3 operation. The OFT is given by the

following:
N-i

X(k) = I:; x(n)e-j2xkn/N.

n=D

We may express this ·function in a linear algebraic form by assigning all x(n)

to a column vector, x E cNxl, and the complex exponential to a Vandermonde

matrix WE CNxN where W is given by

1 1 1 1
w-1 w-2 w-3 w-(N-i)

w-2 w-4 w-6 w-2(N-i)

W= w-3 w-6 w-9 w-3(N-i)

w-(N-i) w-2(N-i) w-3(N-l) w-(N-i)'

where W = ei2x/N. Thus the OFT of xis given by

X=WTx

Where X E cNxl. Clearly W may be precomputed and its form depends

upon the number of points to be computed and the dynamic range requirements of the

problem. Obviously, since the Gauss machine performs level 3 operations at greatest

efficiency when the dimensions of the operand matrices are multiples of two it may

be desirable to gang three DFTs together by replacing the column vector x with

an N X 2 matrix where each column of data represents a vector to be transformed.

Additionally, if only selected frequency bands arc of interest. then the OFT need only

be computed for those b<uHb.

123

7.1.3 Convolution and Correlation

Like the DFT, convolution and correlation may be expressed as level 3 operations.

Recall that discrete correlation and convolution are given by

X(r) = Lx(~)y(n + r),
n

Y(r) = Lx(n)y(r- n),
n

respectively. We will develop the correlation example here; convolution follows di­

rectly. Let x and y be data sequences of length Nand M, respectively. The correlation

of x and y will have-a length of N + M - 1. We will assign the sequence x to a row

vector x E Clx(N+M-l) given by

x = (xo x1 x2 · · · XN-1 I 0 · · · 0) .

The sequence y is used to build a matrix Y E cN+M-IxN+M-1, which when mul­

tiplied with x will give the correlation sequence of x and y. Since xis a row vector

we would like the columns of Y to be shifted versions of the sequence y. Assuming

y = {yo, Yh Y2, ... , YM-d, then the matrix Y would have the form

YM-1 YM-2 YM-3 0 0 0
0 YM-1 YM-2 0 0 0
0 0 YM-1 0 0 0

Y= 0 0 0 0 0 0

Y1 0 0
0 0 0 Y2 Y1 0
0 0 0 Y3 Y2 Y1

Thus, we can Hee that the product xY will produce the correlation sequence of x and

y. The above form of the correlation is suboptimal in that it. uses level2 operations to

perform the correlation operation. Optimal performance is obtained by utili,ing level

124

3 operations to perform the correlation. We will form a new matrix X E C 2xN+M-1

which contains a shifted version of the row vector x:

0 0
XN-1 0

The form of the matrix X requires that the form of Y be modified so that it

reflects the shifts in X. The first column of the new version of Y, Y', will produce

the first three elements of the correlation sequence; the second column will produce

the next three, and so forth. The form of Y' is given as

YM-3 YM-6 0 0

YM-2 YM-5 0 0

YM-1 YM-4 0 0
0 YM-3 0 0
0 YM-2 0 0
0 YM-1 0 0

Y' = 0 0 0 0
0 0 Y1 0
0 0 Y2 0

0 0 Y3 0
0 0 Y4 Y1
0 0 Ys Y2
0 0 Y6 Y3

The product has the form XY' E C 2xf(N+M-1)/21. This level 3 form of

the correlation operation executes two times faster than the level 2 version, and

the computational speed of the level 3 algorithm will grow geometrically with N

for an N x N array, while the level 2 version will only have a linear growth of the

computational speed on the same array. Additionally, since Y' is banded the structure

can be exploited to avoid mass multiplication by zeros.

125

7.2 Vector Mode Algorithms

While many algorithms may be expressed as level3 operations, there are several oper-

ations which may not be performed efficiently on the Gauss machine while operating

in systolic mode. In order to improve this situation, an architectural enhancement

was made to allow the Gauss machine to operate in vector mode. The vector mode

of operation uses a subset of the Gauss machine's processing elements and a mini­

mal amount of additional hardware to form the vector processor. See Figure 6.3 and

Figure 6.4.

7.2.1 Vector Addition

A common operation is the addition of two vectors. While the systolic mode of

operation can be used accumulate two vectors together, it is very inefficient. Let

x, y E CN be two vectors which are to be added. In order to add them in the systolic

mode of operation of the array, they are appended so as to form a matrix Z E cNx2

such that

Z=(xly).

The matrix Z is then multiplied by the matrix (11) to form the sum of the two vectors:

X+ y = (11) Z.

This technique may be extended to the accumulation of [(vectors, leading to the

form
K-1

LX;= (111 .. · l)(xolxdx21" · x,,._,) ·
i=Cl ----.,--

/\

126

From Equation 7.1 we know that the number of cycles required to complete the

product is

fK/21 (N + 6),

which produces a total of (K- 1) N complex addition operations. This leads to an

efficiency metric for systolic mode vector addition given by

T/AS = (I< - 1) N I dd' . I f J(
121

(N + 6) comp ex a 1tions per eye e.

In the vector mode of addition, the summands are accumulated after being

multiplied by one. ~he result is that the number of cycles required for the addition

of J(vectors of length N is given by

KN + 3,

thus leading to an efficiency metric of

2 (I<- 1) N I dd' . I
T/AV = /(N +

3
comp ex a 1t10ns per eye e,

where the factor of 2 is a result of operating two PEs in tandem as vector accumu­

lators. For large N, and J(even, T/AS ~ T/AV· However, for N large and /(odd,

then

T/AV =](+ 1
T/AS](•

In general, we would expect the vector method to have slightly better performance

than the systolic method.

7.2.2 Pointwise Vector Multiplication

Pointwise multiplication or vectors is an important operation in signal processmg

applications. Point.wioe rnull.iplicat.ion or vectors is used to window vecto1·s, and to

127

scale a vector. In systolic mode, a vector of length N may be pointwise multiplied

by another vector by taking the second vector and placing it on the diagonal of an

N x N matrix of zeros and then multiplying it with the first vector as follows. Suppose

x, y E CN. Then the pointwise vector product (denoted by ·*) of these two vectors

IS

Xo 0 0 0
0 Xi 0 0

X. *Y = 0 y.

0 0 0 XN-1

This expression may' be evaluated in a manner which reduces the obvious large order

of computation by just producing the block matrix products of the vector and the

2 x 2 submatrices centered along the diagonal. This produces an expression for the

number of cycles required to execute the pointwise vector product given as IN /218

cycles. Thus, since this is the number of cycles required to execute N multiplications,

the efficiency metric is given as

T/MS = I ~18 complex multiplications per cycle.

In vector mode, the two vector PEs may multiply pairs of multiplicands in a pipelined

manner, one product per cycle per PE. Thus, it requires IN /21 cycles to pointwise

multiply two vectors of length N. This leads to an efficiency metric of

T/MV = N l l . l' . l IN 121 comp ex mu tip 1catwns per eye e.

For large N, t.he vect.or mode of opemtion is approximately eight times faster than

the systolic mode of operation.

128

7.3 QR Decomposition

An important application of the RNS is the solution of linear equations of the form

Ax=b.

Methods such as Gaussian elimination, while amenable to implementation on a vector

machine, are not as robust as the QR decomposition (QRD). The QR decomposition

is given below.

Theorem 2 (QR Factorization) If A E cmxn of rank n, then A can be factored

into a product QR, where Q E cmxn, and is a matrix with orthonormal columns,

and R E cnxn and is upper triangular and invertible.

The (QRD) can be performed efficiently in the RNS using the Householder re­

flection. The Householder reflection is preferable over the Givens rotation since it does

not contain transcendental functions. Since the RNS is a division-free integer system

of arithmetic, it cannot compute transcendental functions efficiently. Additionally,

Givens rotations suffer from potential finite-precision error conditions to which the

Householder reflections can be made immune. Finally, the Householder reflection is

inner-product rich, thus making it ideal for Gauss machine implementation.

7.3.1 Householder Reflections

The Householder reflection is an orthogonal vector transformation which is used to

selectively intmduce zems in a vector by reflecting the vector through a plane. In

general, the llouseholder reflection is very efficient when used to introduce a large

nlllnber of zerox into a vector.

129

The Householder reflection introduces zeros into a vector x ol 0 via an orthog­

onal transformation. The transformation matrix, H is defined by

yyT

H = 1-2--r,
v v

where v, the Householder vector is defined by

When the Householder matrix is applied to the vector x, we arrive at

(7.3)

In computing the Householder vector, v, we may choose to use either of the forms

v = x + llxll2 e1, or

v = x- llxll2 e1.

It is desirable to keep the 2-norm of the Householder vector from becoming small

since it would result in the scalar vector 2/vTv from Equation 7.3 having a large

relative error. Thus we may choose v in such a way as to maximize the 2-norm of v:

Since the RNS is a division-free system of arithmetic, reduction of division operations

is attractive. Usually, when the Householder transform is used, it is typically used en

masse. Thus, it is desirable to maintain the individual Householder transform matrix

as a quotient of the fot·m
v'~"vl- 2vv'~"

y'l"y

130

leading to the form

where

H' = vTvH

= vT vi- 2vvT. (7.4)

This form avoids division, at the expense of consumption of dynamic range. In

particular, if x is of length N, and the dynamic range of the elements of x is p, then

the dynamic range of vis (N + l)p. From this we have the dynamic range of vTv

given by (N + l)p + N- 1. Assuming that N > 2, then we may approximate the

dynamic range of H' as (N + 1)p + N - 1. The next section discusses the application

of the Householder transform to the problem of the QRD.

7 .3.2 Householder QR Factorization

The previous section introduced the use of the Householder transform for the intro­

duction of zeros into a vector. By repeated application of the Householder transfor­

mation, we may decompose a matrix A into an orthogonal matrix and an upper-right

triangular matrix, as discussed in Theorem 2 in Section 7.3. The following discussion

will examine the implementation of the QRD using the Householder transformation,

with special emphasis on the implications of using the transform on the Gauss ma­

chine.

Suppose we have A E Rmxn, and wish to pl"Oduce the QR decomposition of

A. Then we must. generate a set·ics of orthogonal transforms which, when applied

to A, will rt'dure A to upper-right triangular form. Define a series of orthogonal

131

transforms

where I; is the identity matrix of order i, and H: is of the form of Equation 7.4,

(7.5)

where y(i) is defined to be the sub-diagonal entries of the ith column of A. Thus, we

may successively apply the H;'s to A:

and thus,

A=QR,

where

7.3.3 Dynamic Range Requirements of the Householder QRD

Since an overflow condition cannot be detected in an RNS system, it is necessary

to determine the dynamic range requirements of a given algorithm before it may be

used with confidence. Computations must proceed assuming a worst-case set of input

data, unless, some occasional error is acceptable.

As in the previous section, suppose we have a matrix A E Rmxn, and we

truncate A to some finite precision where we may represent each a;j with k or fewer

bits, for all i E {1, 2, 3, ... , m}, j E {1, 2, 3, ... , n}.

To determine H; we examine Equation 7 ..). The first tcnn contains an inner

pmdnct which a.cts as a coefficient. to an identity matrix. The ved.ot· y(i) is determined

132

using Equation 7.3. The dynamic range of vli) is k + 1 bits while v?> has a dynamic

range of k bits for all j E {2, 3, 4, ... , (m - i)}. Thus the dynamic range of the inner

product of Equation 7.5 is 2(k + 1) + r(m- i- 1)/3l

Proof:

Let vERn. Then

where v1 is known to have a dynamic range of k + 1 bits, and all v; have a dynamic

range of k bits, fori E {1, 2, 3, ... , n}. Thus, 0 (v?) = 2(k + 1) and 0 (vl) = 2k.

Examining the above summation, we see that the dynamic range is easily computed:

2k+2 2k 2k 2k ----v? + v~ + v5 + v~ + · · · .
'--v-'

2k+l

2k+2

(2k+2)+1

This leads to a dynamic range bound of 2(k + 1) + r(n -1)/31.

The second term of Equation 7.5 is a scaled outer product. Let B = 2v(i)y(i)T_

Then b11 has dynamic range 2(k + 1) + 1 = 2k + 3 while b1p and bj1 have dynamic

range (k + 1) + k + 1 = 2(k + 1), and b1P has dynamic range k + k + 1 = 2k + 1, for all

j =f. 1, and all p =f. 1. To summarize these findings, the dynamic range of B is given

as
2k +3 2(k + 1) 2(k + 1)

Ov(B) =
2(k + 1) 2k + 1 2k + 1

(7.6)

2(k + 1) 2k + 1 2k + 1

Finally, the two terms of Equation 7 .. 5 arc subtracted leading to the final result

for the dynamic range of Hi. Cle<trly, since the first term is a scaled identity matrix,

the dynamic' range of the off-diagonal dements will be as given in Equation 7.6. For

133

h:
11

, if (m - i) ::; 3 then the dynamic range is 2k + 4, else, if (m - i) > 3 then the

dynamic range is 2(k + 1) + l(m- i)/31. For the remaining diagonal elements, h: ,
JJ

j #- 1, the dynamic range is 2(k + 1) + l(m- i)/3l To summarize,

a; 2(k + 1)

2(k + 1) b; 2k + 1

Ov (H:J = 2k + 1
..

2(k + 1) 2k + 1

where

{
2k +4

ai = 2(k + 1) + l(m-:- i)/31

and b; = 2(k + 1) + l(m- i)/31.

2(k + 1)

2k + 1

2k + 1

2k + 1 b;

(m- i) ::; 3
(m- i) > 3 '

Clearly, the dynamic range of the above approach quickly gets out of hand.

An alternative approach is suggested by [11]. This approach relies on a block repre-

sentation and is given below.

y = y(l)

W = -2v(1) jv(l)T v(1)

for j=2:r

end

z = -2(1 + WYT)vUl jvUlT vUl
W = [Wz]
Y = [YvUl]

Let the Householder vectors y(i) be used to pre-generate y(i) = -2v(i) jv(i)T y(i).

Then the above algorithm is modified to take the form given below.

y = y(l)

w = y(l)

for j=2:~·

end

z = (I + wYr)vUl
W=[Wz]
Y = [YvUl]

134

Clearly the modified algorithm is relatively rich in level 3 operations. As the

index j increases, the order of computation for the outer product WYT increases

as the number of columns of W and Y increases, and thus the processor utilization

mcreases.

Chapter 8

SUMMARY AND CONCLUSIONS

8.1 Motivation

There is a demonstrable need for high speed front-end signal processors for signal

and image processing applications. There exist a number of problems (e.g., RADAR,

communications, video processing) which demand a level of performance which ex­

ceeds the capabilities of the current generation of DSP microprocessors by an order

of magnitude or more. This need for speed cannot exacerbate existing constraints

on size, power, reliability, and cost. With this motivation the construction of a pro­

totype array of processors based upon the GEQRNS was undertaken. The goal of

this prototype was to demonstrate that an array of RNS-based processors could be

used to obtain high computational throughputs without exacerbating the aforemen­

tioned problems. The Gauss machine was constructed using discrete components as

a prototype to a VLSI implementation.

Another goal of the Gauss machine was to demonstrate that an array processor

could be constructed which would be applicable to a rich set of problems and thus

demonstrate that a technology which was sub-optimal in the architectural sense could

be used for a variety of problems, thus affecting a savings in non-recurring engineering

costs (NREs). Most signal processing problems are rich in inner products which may

be expressed in tcrn1s of level 1, level 2, or level :3 operations. The Gauss machine

was designed t.o achi<•ve a high level of effici<•ncy in IWrforming level:) operations, and

136

a lesser, although still excellent, throughput in level 2 and level 1 operations. Many

signal processing problems can be efficiently stated in terms of level 3 operations, and

thus this bias towards level 3 operations was created.

8.2 Results

There were a number of problems which had to be solved in order to construct the

Gauss machine. Initially, certain problems in developing an experimental environ­

ment were identified. These problems included packaging constraints, flexibility, and

portability. Packaging constraints were solved by developing our own prototyping

environment, the InvestiGATOR. The InvestiGATOR also solved the problems of

portability and flexibility by incorporating a general purpose computer based upon

the Motorola 68030 microprocessor, and the inclusion of the SCSI interface for high

speed, portable communications, and the RS-232C interface for low speed, portable

communications. The InvestiGATOR solved mechanical packaging constraints en­

countered in earlier efforts by the construction of a large backplane based system.

The backplane includes broadcast and near-neighbor communications making it suit­

able for a variety of prototyping tasks. Additionally, mechanical constraints were

reduced to two dimensions (thickness and length) from the three dimensions (thick­

ness, length, and height) found in conventional environments.

The Gauss machine was constructed on six boards which reside on the Investi­

GATOR backplane. Each of these six boards has a 2 x 2 array of seven-bit GEQRNS

processors. These processors were constructed using low-cost, commodity discrete

logic components. The arithmetic elements were implemented with low-cost 32K x 8

85 ns SRAM. The arithmetic clements (SRAMs) arc the limiting factor in the speed

of the system: t.he 8!) ns SRAMs arc suitable for a 10 Mil;, clock rate, while :15 ns

137

SRAMs would be suitable for a greater than 20 MHz clock rate, and 15 ns SRAMs·

could be used to generate a clock rate of 50 MHz. At the 10 MHz clock rate, the

array achieves an equivalent peak arithmetic rate of 320 million operations per second

when performing complex arithmetic, compared with conventional processors. Each

of the processor elements on the board occupies approximately 4.4 in2 of board area

and is a discrete implementation of a structure which occupies only approximately

2 mm2 when implemented in the MOSIS 2.0 ttm scalable CMOS process.

The six processor boards may be configured to act as a single GEQRNS

array which can process arithmetic word widths of approximately twenty-one bits

(20.25 bits, or 122 dB). Alternately, the Gauss machine may be configured as a single

conventional RNS array processor with a dynamic range of approximately thirty-three

bits. Additionally, the array processor may be configured to operate as a vector pro­

cessor using a subset of the processing elements in the array. While the whole array is

ideal for level3 operations, it cannot perform level2 and Ievell operations efficiently.

To solve this problem, a vector sub-processor was carved out of the array. The vector

sub-processor can be used to efficiently perform level 2 and level 1 operations such

as matrix-vector, and vector-vector inner products, as well as pointwise addition and

multiplication. In the vector processor mode, the peak arithmetic rate is equivalent

to 160 million operations per second when performing complex arithmetic, compared

to conventional processors.

One of the original goals of the project that was dropped due to budgetary

constraints was the construction of forward conversion and CRT engine in hardware.

The hardware implementation was replaced by a high performance software imple­

mentation which runs on the InvestiGATOR cornmunica.t.ion processor. While this

loss does prevent the Gauss ma.chin<~ from being used for high speed real-time appli-

138

cations, it does not seriously interfere with the goals to be demonstrated since the

Gauss machine processor array does demonstrate high arithmetic rates.

In conclusion, the Gauss machine demonstrates a high performance, high RNS

content architecture for signal processing applications. The Gauss machine performs

at an equivalent peak processing rate of 320 million operations per second when

performing complex arithmetic, compared to conventional processors. The Gauss

machine demonstrates fault tolerance at an architectural level due to the properties

of the RNS. This discrete implementation of the Gauss machine demonstrates a cost

parity with conventional, off the shelf technologies, however, substantial cost savings

can be expected in a VLSI version of this technology, even when produced for rela­

tively short production runs. The Gauss machine also demonstrates an architecture

which can potentially be scaled into other technologies (e.g., ECL and GaAs) to pro­

duce performance which exceeds that of the Gauss machine by an order of magnitude

or more, thus yielding performance several orders of magnitude greater than that

possible with conventional signal processing technology.

Appendix A

INVESTIGATOR SCHEMATICS

r."Y .• _ •••• __ .._

Figure A.l: InvestiGATOR CPU Module

140

Figure A.2: InvestiGATOR SCRAM Module

141

-· ,_....,.,._ _ , ..

Figure A.3: InvestiGATOR ROM Module

142

Figure A.4: InvestiGATOR I/0 Module

143

-

Joo

Figure A.5: InvestiGATOR SCSI Module

144

Figure A.6: InvestiGATOR SIO Module

B5

Figure A.7: InvestiGATOR Array Bus Interface

146

-

~~···-----·

-__ .,..__

'"""'""n

Figure A.S: InvestiGATOR Miscellaneous Module

147

Figure A.9: InvestiGATOR Array Bus, First Part

148

_ "

Figure A.lO: InvestiGATOR Array Bus, Second Part

149

............

Figure A.ll: InvestiGATOR Array Bus, Third Part

150

_

Figure A.12: InvestiGATOR I/0 Expansion Bus

151

...

...
r
...
r

5 -
_,.,, .. , "

Figure A.l3: InvestiGATOR Bypass Capacitors

Appendix B

INVESTIGATOR STATE MACHINES

F

F

S2

BERR

Figure B.l: Bus Error Detection State Machine

+'
I

Q)
s:.
u
cS
u

-n
Q)
+'
1..
0

S2
<t

Q)

u
>­
u

cS
c:
1..
Q)
+'
X
w

153

SO <Power-up)

Title• EPROM Controller Sto. te

~M~a~c~hl~n•~~~~~~~~~
Author1 Jon Mellott

L Do. tee 5/27/90 Rev• 0.2

Figure B.2: ROM Controller State Machine

RI..ISIO

OCR. INC
CBACK. CSAI.L

RLIS'il
OCR, ST~M

CSALL

SO CF'on,.-... l
LATCH

F

F

'" sn:RM

'"

m..IS6

STE:RM, CBACIC
OE:R, CSALL

CSAI..L.

Figure B.3: SCRAM Controller State Machine

154

155

SO (Power-up)

Figure B.4: SBIC Controller State Machine

156

SO <Power-u >

Figure B.5: SIO Controller State Machine

Appendix C

INVESTIGATOR PROGRAMMABLE LOGIC DEVICE LISTINGS

This appendix contains lists for the InvestiGATOR PLDs. These PLDs are

used throughout the InvestiGATOR.

NOTE: THIS MATERIAL IS AVAILABLE UPON REQUEST.

C.l MACHlC

C.2 MACH2

C.3 MACH3XA

C.4 PALO

C.5 PALlA

C.6 PAL3B

C.7 PAL4

C.8 PAL5

C.9 PAL7

C.lO PAL12

I

/~

Appendix D

INVESTIGATOR SOURCE CODE

NOTE: THIS MATERIAL IS AVAILABLE UPON REQUEST.

D.l Link Specification File: BACKPLAN.LNK

D.2 Basic Type Definitions: BASETYPE.H

D.3 I/0 Constants: INVESTIO.INC

D.4 Base Firmware: BACKPLAN.C

D.5 QRNS Conversion Code: CONVERT.C

D.6 Monitor: MONITOR.C

D.7 Serial I/0 Code: ESCC.C

D.S SCSI I/0 Code: SBIC.C

D.9 Interrupt Service Routines: ISR.M68

D.lO POST and Initialization: POSTINIT.M68

D.ll C Startup Code: STARTUP.M68

Appendix E

GAUSS MACHINE SCHEMATICS

Figure E.l: Gauss Array

160

--· -·-.: . ._
,. ... , ...

Figure E.2: Gauss Array Miscellaneous

--·-t..lo< _
~

Figure E.3: Gauss Array Instruction Decoding

161

Appendix F

GAUSS MACHINE PROGRAMMABLE LOGIC DEVICE LISTINGS

This appendix contains listings for the Gauss machine controller's PLDs.

These PLDs are used for decoding instructions from the microsequencer, and in­

terface glue between the InvestiGATOR and the controller.

NOTE: THIS MATERIAL IS AVAILABLE UPON REQUEST.

F.l PAL Listings

F.l.l PALCLPDS

F.l.2 PALC2.PDS

F.l.3 PALC3.PDS

F.l.4 PALC4.PDS

F.l.5 PALC5.PDS

F.l.6 PALC6.PDS

F.l.7 PALC7.PDS

F.l.S PALCS.PDS

F.l.9 PALC9.PDS

Appendix G

GAUSS MACHINE MICROCODE

This appendix lists the Gauss machine microcode. This microcode is written

for Advanced Microdevices' ASM14x microcode assembler. This microcode assem­

bler emits object code for AMD's Am29PL14x/15x family of EPROM based microse­

quencers. The listing in Section G.l is the source for the microcode. Section G.2

describes the microcode and microinstructions.

G.l Gauss Machine Microcode Listing

NOTE: THIS MATERIAL IS AVAILABLE UPON REQUEST.

G.2 Gauss Machine Microcode Description

Appendix H

MACINTOSH API SOURCE CODE

H.l

H.2

H.3

H.4

H.5

H.6

H.7

H.8

H.9

H.lO

This appendix contains source code for the Macintosh/Gauss machine API.

NOTE: THIS MATERIAL IS AVAILABLE UPON REQUEST.

TYPES.H

CONV.H

INTMATRIX.H

INTMATRIX.C

LIST.H

LIST.C

MATRIX.H

MATRIX.C

UTILS.H

UTILS.C

REFERENCES

[1] M. Griffin, F. J. Taylor, and M. Sousa, "New scaling algorithms for the chi­
nese remainder theorem," in Proc. 22nd Asilomar Conf. on Signals, Syst., and
Computers, 1988.

[2] M. Griffin, M. Sousa, and F. J. Taylor, "Efficient scaling in the residue number
system," in Proc. IEEE International Conf on Acoustics, Speech, and Signal
Processing, 1989.

[3] J. V. Krogmeier and W. K. Jenkins, "Error detection and correction in quadratic
residue number systems," in 26th Midwest Symposium on Circuits and Systems,
1983.

[4] W. K. Jenkins,' "The design of error checker for self-checking residue number
arithmetic," IEEE Trans. Computers, vol. 32, pp. 388-396, Apr. 1983.

[5] G. Zelniker and F. J. Taylor, "A reduced complexity finite field alu," IEEE
Trans. on Circuits and Systems, vol. 38, pp. 1571-1573, Dec. 1991.

[6] A. van de Goor and C. Verruijt, "An overview of deterministic functional ram
chip testing," ACM Computing Surveys, vol. 22, pp. 5-34, March 1990.

[7] S. Y. Kung, "VLSI array processors," IEEE ASSP Magazine, pp. 4-22, July
1985.

[8] E. Arnould, H. T. Kung, 0. Menzilcioglu, and K. Sarocky, "A systolic array
computer," in Proc. IEEE International Conf on Acoustics, Speech, and Signal
Processing, 1985.

[9] H. T. Kung and others;, "iWarp: an integrated solution to high-speed parallel
computing," IEEE Trans. Computers, vol. 38, pp. 330-339, Sep. 1988.

[10] R. Simar, "The TMS320C40: a DSP for parallel processing," in Proc. IEEE
International Conf on Acoustics, Speech, and Signal Processing, pp. 1089-1092,
1991.

[11] G. H. Golub and C. F. van Loan, Matrix Computations. Baltimore; Johns
Hopkins University Press, 2nd ed., 1989.

